福昕翻译

>

建筑材料

切口深度比对钢纤维混凝土开裂后行为的影响(下)
切口深度比对钢纤维混凝土开裂后行为的影响(上)从实验中获得的接近平均法向应力的特征残余应力的评估要求测试之间的分散度较低。这可以通过增加样本数来实现。这将导致统计不确定性因子kx减小,因此结果的变化将较小。在表4中,示出了两个系列的残余强度的分类。根据模型代码2010(MC-2010)[44,45]的建议,对于分类,分别对五个和六个样本进行了测试,系数kxn = 2.33和2.18。没有分类的(a/d)比是没有达到最小特征残余强度1N /mm2的比。对于系列1的比率(a/ d)= 0和0.08所获得的结果低而不足,不足以达到最小特征残余应力并能够对其残余行为进行分类。相反,比率(a / d)= 0.16和0.33在它们各自的残余响应中显示出完美的塑性行为和硬化行为。图10. 每个(a / d)比的特征残余强度:(a)系列1和(b)系列2。如表4所示,系列2的结果表明,通过增加(a/d)比率,也会在残余阶段提高性能,这可能会导致硬化行为,如表4所示。 (a/ d)= 0.33比率。这证明了纤维含量足够高,可以在弯曲下表现出硬化行为[50]。这表明,即使通过增加比率(a /d)减小到达第一裂纹的峰值载荷,通过改善残余阶段的性能,纤维的添加也可以达到甚至超过这种载荷。该行为将不取决于破裂表面上的总纤维量,而是取决于对水泥基体的破裂过程的控制有有效贡献的纤维量。4.5. 钢纤维混凝土的断裂能如表5所示,系列1的(a / d)比的增加对断裂能产生不利影响,如用断裂功模型1计算的那样。这表明具有纤维的增强基体无能为力。阻止裂纹扩展;这与系列2中观察到的相反,在系列2中,通过使用大量的纤维(即40 kg / m3),即使(a / d)比增加,断裂能也会增加。这种行为意味着,由于存在大量的纤维,通过整个裂纹面的应力的桥接机制,裂纹强度会增加,这会在基体中产生多重裂纹条件。表5. 用模型1 [ 47 ]计算的用纤维增强的样品(系列1和系列2)的断裂能。这样,由于钢的提取过程,裂化后阶段获得的断裂能将受到位于水泥基体中的纤维量以及残余阶段中传递应力的能力的影响。纤维由于其钩状端的拉直而产生较高的能量消耗。通过限制裂纹的扩展以及限制裂纹的发生,它们也具有减小裂纹上部应力集中的能力[36,37,51-57]。如前所述,在比率(a / d)= 0.08和0.33的情况下,考虑到系列2的断裂能的平均增量超过100%,断裂能表示纤维在残余阶段的重要贡献。 ,相对于系列1获得的结果。对于比率(a / d)= 0,相差仅为57%;对于这表明样品中没有缺口将无法使纤维有效发挥作用,从而限制了能量断裂的增加。图11a,b显示了用于斜率裂缝工作模型(模型2)的剩余阶段裂缝能量计算的图表。在这些图中,代表了每组测试样品以及韧带的初始大小(样品顶面和缺口尖端之间的面积)。考虑到断裂功与开裂表面成比例,并且开裂的最终面积等于韧带的初始面积[48]。图11.用斜率断裂功模型2计算断裂能的曲线拟合:(a)系列1和(b)系列2。在这些图中,对于缺口从上到下的裂隙梁,认为零能量的必要性。这意味着假定曲线从原点开始。此外,曲线的斜率表示裂纹扩展一个深度单元所消耗的能量。通过将该斜率除以梁的宽度(b),可以得出所需的断裂能。值得一提的是,通过该模型获得的断裂能结果与第一个模型获得的结果相对接近。这些值在表6中表示,其中GF(1)和GF(2)分别代表从模型1和2计算得到的断裂能。表6.通过研究模型计算的断裂能(GF)[58]。可以看出,第二个模型与结果的变化有直接关系,因为通过获得高变化系数,因子R2也将增加。这可能导致难以获得复合材料的后裂化阶段行为的代表性结果。5.结论本文介绍的结果仅限于具有钢纤维的纤维增强混凝土,并且已描述了体积纤维的百分比。因此,需要使用其他类型的纤维(合成纤维和天然纤维)并具有不同的特性进行实验,以扩大改善混凝土开裂后响应的机会范围。根据结果,可以得出以下结论:1. 假设在每个研究系列中获得的载荷值都是封闭的,则比例极限下的载荷不受钢纤维添加的影响。这表明,在此阶段,材料的性能主要取决于水泥基质和剩余的混凝土面积。2. 荷载和应力在比例极限处表现出与缺口深度比成反比的行为,这种比例的增加将导致混凝土易于失效。3. 纤维剂量的增加导致法向和特征残余应力的改善。4. 对于系列2,切口深度比(a / d)的增加会增强法向和特征残余性能。对于比率(a / d)= 0,法向残余应力的增量为61%,而对于比率(a / d)= 0.08、0.16和0.33,增量为157%,129%和86 %, 分别。比值(a / d)= 0.08提供了所有考虑的比值中最佳的特征残留性能。5. 对于系列1,切口深度为25毫米,等于(a / d)的比值为0.16,是满足国际标准中规定的最小残余应力要求的唯一比率。6. 对于少量的纤维(在这种情况下为20 kg / m 3)和小的(a / d)比(即a / d <0.16),由于残留强度的最小分类是不可能的,这是由于样本无法达到最小值的事实。7. (a / d)= 0.33可以得到更大的残余强度分类,这意味着开裂后的性能不取决于混凝土,而是取决于纤维传递应力的能力。试样的裂纹面以及位于分析区域的纤维数量。8. 通过将纤维体积从20 kg / m 3增加到40 kg / m 3,断裂能增加了约97%(模型1)和约35%(模型2)。这意味着钢纤维有助于改善复合材料的残余性能。9. 对于系列2,即使(a / d)比也增加,断裂能也会增加。大量纤维的存在使抗裂强度增加,并在基质中产生多重裂化条件。10. 所使用的数学模型显示出相似的结果,尤其是对于混凝土中钢纤维含量高的情况。11. 相对于标准中推荐的比率,本研究中获得的结果将为不同比率(a / d)提供实验参考框架,这可以有助于对从实验室测试确定的残余应力进行分析的标准。参考文献1. Selvamani,G。 Duraisamy,S .; Sekar,A。《纤维增强混凝土综述》。诠释J.文明。技术。 2016,7,1–8。2. Orbe,A。 Rojí,E。; Square,J .; Losada,R.优化结构HACFRA(钢纤维增强的自密实混凝土)组成的研究。建筑信息2015,67,e061。3. Vairagade,V.S .;Kene,K.S.使用金属和合成纤维的普通混凝土的强度。 Procedia工程师。 2013,51,132–140。[CrossRef]4. 艾莉·H;安东尼斯冲绳约束钢纤维混凝土梁的试验研究。 Procedia工程师。 2015,125,1030–1035。 [CrossRef]5. Tiberti,G .; Minelli,F.;Plizzari,G.钢纤维在钢筋混凝土构件中的开裂行为:一项综合实验研究。 Cem。确认Res。 2015,68,24–34。 [CrossRef]6. G. A.S.Santhi;加内什(Ganesh)卷曲和钩端的钢纤维对混凝土抗冲击性的影响。J.应用科学。 2014,17,259–266。[CrossRef]7. Patil,S.P .;桑格(K.K.)预应力和非预应力普通混凝土和SFRC混凝土梁的剪切和挠曲性能。 J.沙特国王大学。科学2017,29,321–328。 [CrossRef]8. 卡里略,J。 Silva-Páramo,D.钢纤维增强的地面混凝土楼板的弯曲试验。Ing。调查技术。2016,17,317–330。 [CrossRef]9. Bencardino,F.;里祖蒂(Lizzuti) Spadea,G .; Swamy,R.纤维增强混凝土断裂性能的实验评估。Compos。 B部分工程2010,41,17–24。[CrossRef]10. 沉德,上午;潘德,上午;麻省Pathan M-40级钢纤维混凝土的试验研究。诠释引用J. Eng。科学2012,1,43–48。11. 里祖蒂(Lizzuti) Bencardino,F.纤维体积分数对SFRC压缩和弯曲实验行为的影响。同时期。科学2014,7,379–390。 [CrossRef]12. Agrawal,A .;贾恩(Jain)Agarwal,S.在不同养护方案下钢纤维增强混凝土的抗压强度测试。诠释J.英语Res。技术。 2014,3,1-5。13. Yehia,S.; A.杜巴;俄勒冈州阿卜杜拉希; Farrag,S.纤维增强自密实混凝土的机械和耐久性评估。构造建立。母校2016,121,120–133。 [CrossRef]14. Musmar,M.钢纤维增强混凝土的抗张强度。同时期。科学2013,6,225–237。 [CrossRef]15. A.梅斯纳纳斯;Gelazius,V .; Kaklauskas,G.;Gribniak,V.; Rimkus,A。SFRC本构模型的新技术。Procedia工程师。 2013,57,762–766。 [CrossRef]16. Orbe,A。 E.Rojí;洛萨达河Cuadrado,J.预测钢纤维增强混凝土(SFRC)残余强度的校准图案。 Compos。 B部分工程2014,58,408–417。 [CrossRef]17. Š。Kelpša;奥古尼斯(M. M.Daukšys; Augonis,A.钢纤维和普通钢筋混凝土受弯构件裂缝宽度计算分析。 J.维持。拱。文明。 2014,6,50–57。 [CrossRef]18. Š,Kelpša;奥古尼斯,医学博士; M.Daukšys;奥古尼斯,A .; Žirgulis,G. SFRC的残余弯曲拉伸强度fR的经验计算方法。力学,2015,21,257-263。 [CrossRef]19. 南阿卜杜拉;范敏;周X.LeGeyt,S.各种钢筋混凝土结构的锚固效应。诠释J. Concr。结构。母校2016,10,325–335。 [CrossRef]20. 英国标准协会。 BS EN 14651:2005金属纤维混凝土的测试方法-测量抗拉强度(比例极限(LOP),残余);英国标准协会:英国伦敦,2005年。21. 南阿卜杜拉;范敏;里斯(D.W.A.)钢纤维增强水泥基复合材料的粘结机理和强度:概述。 J. Mater。文明。 2018,30,04018001. [CrossRef]22. 温德纳河。马康(M.沃雷尔,J。 Cusatis,G.紧固系统混凝土的表征。在“结构系统的生命周期:设计,评估,维护和管理”中,第四届国际民用生命周期研讨会论文集。工程,IALCCE 2014,日本东京,2014年11月16日至19日; CRC出版社:美国佛罗里达州博卡拉顿,2015年;第437–442页。 [CrossRef]23. 戈帕拉拉特南(V.S.)Gettu,R.纤维增强混凝土的弯曲韧性表征。 Cem。确认Compos。1995,17,239–254。 [CrossRef]24. Siddika,A .; H.Alabduljabbar; W. Ferdous;Alyousef,R.使用FRP加固钢筋混凝土结构的性能,挑战和机遇-最新技术回顾。 。失败。肛门2020,111,104480。[CrossRef]25. 迪卡罗,楼。 Spagnuolo,S.承受纯张力的钢纤维增强混凝土构件的开裂行为。结构。确认2019,20,2069–2080。 [CrossRef]26. 阿卜杜勒·卡达(Abdalkader) O.Elzaroug; Abubaker,F.钢纤维增强混凝土梁的挠曲开裂行为。诠释J.科学技术。 Res。 2017,6,1-5。27. A.Mudadu; Tiberti,G .; Plizzari,G .; Morbi,A.聚丙烯纤维增强混凝土在弯曲和单轴拉伸试验下的开裂后行为。结构。确认2019,20,1411–1424。 [CrossRef]28. W. Ferdous;马纳洛(A.Aravinthan,T.束取向对不同剪切跨度-深度比的酚醛夹芯复合材料静态性能的影响。Compos。结构。 2017,168,292–304。[CrossRef]29. ACI委员会446。混凝土结构的断裂力学第一部分,第一届国际混凝土结构的断裂力学国际会议论文集(FraMCoS1),美国,布雷肯里奇,1992年6月1-5日。30. 克莱顿,法学博士;克拉克(A.J.)非线性断裂力学。连续体力学百科全书; Altenbach,H.,Öchsner,A.,Eds.; Springer GmbH:德国斯图尔,2018年。31. 宾夕法尼亚州巴拉古鲁; Shah,S.P.纤维增强水泥复合材料; Mc Graw Hill International:美国纽约,1992年。32. Nam,Y.J .;黄禹锡;朴建勋纤维增强水泥基复合材料设计,利用三维打印技术控制纤维的分布和方向。 3D混凝土印刷技术; Butterworth Heinemann:英国牛津,2019年。[CrossRef]33. Mihashi,H。JCI-DFRCC关于DFRCC术语和应用概念的摘要报告。 2002年1月。在线提供:http://citeseerx.ist.psu.edu/viewdoc/downloa(于2020年8月7日访问)。34. Huespe,A.E.包含不连续性的裂纹模型;施普林格:2011年,德国柏林。[CrossRef]35. Kirane,K .;巴赞特(Z.P.)准脆性材料疲劳的微平面损伤模型:亚临界裂纹扩展,寿命和残余强度。诠释J.疲劳2015,70,93-105。 [CrossRef]36. N. Trottier,J.ACIMJ(1995)。纤维增强混凝土弯曲韧性表征的测试方法:一些问题和建议。母校J.1995,92,48-57。37. N.栗原M. Kamada,T .;内田,Y .; Rokugo,K.拉伸软化图和钢纤维增强混凝土的性能评估。 。分形。机甲2000,65,235–245。 [CrossRef]38. 瓦法(FaF) Ashour,S.A.高强度纤维增强混凝土的机械性能。母校J. 1992,89,449-455。39. 国际实验室和建筑材料,系统及结构专家联盟。 RILEM会议论文集PRO 31:国际RILEM钢纤维增强混凝土测试和设计方法研讨会:背景和经验; Schnütgen,B.,Vandewalle,L.,Eds .; Rilem:法国Bagneux,2003年; ISBN 2-912143-38-1。40. 国际实验室和建筑材料,系统及结构专家联盟。 RILEM会议录PRO 39:第六届RILEM国际纤维增强混凝土专题讨论会(BEFIB 2004); Di Prisco,M.,Felicetti,R.,Plizzari,GA。,Eds .; Rilem:法国Bagneux,2004年; ISBN 2-912143-51-9。41. BSI。混凝土中纤维的测试方法第2部分:对混凝土的影响BS EN 14845-2; BSI:英国伦敦,2006年。42. 建筑业—液压水泥机—规格和测试方法。 NMX-C-414-ONNCCE-2014。可在线获得:http://www.imcyc.com/revistacyt/pdf/enero2016/problemas.pdf(2020年8月7日访问)。43. BSI。混凝土纤维测试方法第1部分:参考混凝土BS EN 14845-1; BSI:英国伦敦,2007年。44. 国际结构混凝土联合会。 CEB-FIP模型代码。 fib《混凝土结构标准规范》 2010; Wiley出版社:德国柏林,2010年。45. 莫林斯,C .; Arnau,O.根据基于挠性牵引力测试的2010FIB模型规范对纤维增强混凝土的抗性分类;加泰罗尼亚中央理工大学:西班牙巴塞罗那,2012年。46. Vandewalle,L .; Nemegeer,D .;巴拉斯(L.巴尔B.巴罗斯,J。 Bartos,P .; N.克里斯威尔(M. Denarie,E。 Di Prisco,M .;等。 RILEM TC 162-TDF:钢纤维混凝土的测试和设计方法-Sigma-Epsilon设计方法-最终建议。母校结构。2003,36,560–567。47. 巴罗斯(J.A.O.); Figueiras,J.A. SFRC的弯曲行为:测试和建模。 J. Mater。文明。 1999,11,331-339。 [CrossRef]48. M.T. Kazemi;纳拉吉Shahvari,F.V.根据缺口梁测试确定SFRC的断裂能。于2004年9月20日至22日在意大利瓦伦纳举行的第六届RILEM纤维增强混凝土(FRC)研讨会论文集(2004年国际非塑料纤维展览会)上发表;第359–368页。49. Shi,Z.结构混凝土的裂缝分析; Butterworth Heinemann:美国马萨诸塞州伯灵顿,2009年。50. 巴罗斯(J.A.O.); ACI委员会544。关于间接方法获得纤维混凝土应力-应变响应的报告; ACI 544.8R;结构工程可持续性与创新研究所:葡萄牙吉马良斯,2018年。51. O.Gencel;奥泽尔角;华盛顿州布罗斯托; Martínez-Barrera,G。用聚丙烯纤维增强的自密实混凝土的机械性能。母校Res。创新2011,15,216–225。 [CrossRef]52. A.R. Bunsell;Renard,J.纤维增强复合材料原理;物理研究所出版社:美国宾夕法尼亚州费城,2005年。53. D.A. Fanella;Naaman,A.E.压缩纤维增强砂浆的应力-应变特性。母校J.1985,82,475–483。54. 丁Y Kusterle,W.早期钢纤维增强混凝土的压缩应力-应变关系。 Cem。确认Res。2000,30,1573–1579。 [CrossRef]55. Nataraja,M .;邓,北; Gupta,A.钢纤维增强混凝土在压力下的应力-应变曲线。 Cem。确认Compos。 1999,21,383–390。 [CrossRef]56. C.D.Atis¸;Karahan,O.《钢纤维增强粉煤灰混凝土的性能》。构造建立。母校2009,23,392–399。[CrossRef]57. R.N. Swamy;曼加特(P.S.)纤维混凝土抗弯强度的理论。 Cem。确认Res。 1974,4,315-325。 [CrossRef]58. 阿吉拉尔五世; Abelardo,J.槽-槽关系对钢纤维增强混凝土的开裂后性能影响的实验分析研究。新墨西哥莱昂自治大学硕士论文,墨西哥圣尼古拉斯·德洛斯加尔萨,2018年10月。点击:查看更多其他分类文章 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-20 19:08:54
切口深度比对钢纤维混凝土开裂后行为的影响(上)
切口深度比对钢纤维混凝土开裂后行为的影响 通过:何塞·瓦尔迪兹·阿吉拉尔,塞萨尔·华雷斯·阿尔瓦拉多 ,何塞·M·门多萨·朗格尔和贝尔纳多·T·泰兰·托雷斯收到:2020年12月13日/修订:2021年1月5日/接受:2021年1月8日/发布:2021年1月18日 摘要:混凝土几乎没有抗拉强度,易开裂,导致使用寿命降低。因此,重要的是找到有助于减轻这些缺点的互补材料。这项研究的目的是通过研究四种缺口深度比0、0.08、0.16,通过分析和实验方法确定添加钢纤维对开裂后阶段纤维增强混凝土性能的影响。和0.33。使用普通混凝土(对照)和体积纤维分别为0.25%和0.50%的纤维增强混凝土,通过72次弯曲测试进行了评估。结果表明,缺口与深度之比最高为0.33的样品能够实现硬化行为。研究结果表明,即使还增加了切口深度比,剂量的增加也会导致残余性能的提高。关键词: 钢纤维增强的混凝土; 钩端钢纤维; 后开裂行为; 切口深度比;延性; 韧性; 断裂能1. 介绍由于其多功能性,可成型性以及其成分的广泛可用性,混凝土是世界上使用最广泛的建筑材料[1-3]。但是,混凝土几乎没有抗拉强度,容易开裂,导致使用寿命降低,因为一旦开裂开始,混凝土就缺乏机械强度,突然失效[4-8]。因此,材料科学和混凝土技术一直在努力寻找一种可以减轻这些缺点的补充材料,一旦达到初次裂纹负荷,就可以提供防止完全断裂的能力。换句话说,他们正在努力寻找一种有助于改善应变容量和能量吸收的材料。这些材料之一是钢纤维。几项有关钢纤维的研究证明,混凝土的抗压强度仅有最小的提高[9-13]。但是,在抗拉强度测试[14-16]上已对性能产生了很大的影响,而在冲击载荷和残余强度测试上则更显着[17-20]。钢纤维适合于增强混凝土,因为它们提供了能量消散机制,并且比普通混凝土更有效地控制了残余阶段的裂纹扩展。后者是使用这种增强材料的主要优点之一。但是,由于有效的混凝土面积,其他特性也会受到影响,例如,纤维的残余性能,这是应力通过纤维与水泥基体之间形成的键传递的主要因素之一[21]。 残余性能的研究可以通过带有受控裂纹的缺口试样来进行,从中获得代表性数据,并且其分散系数小于未缺口试样的分散系数[22,23]。据报道,使用钢纤维增强混凝土(SFRC)有几个优势,例如,降低成本和改善结构质量,主要是在裂缝控制和循环荷载下[24]。一些作者集中研究了埋入普通混凝土和钢纤维增强混凝土纽带中的钢筋的拉伸刚度效应,改变了主要参数,例如纤维体积,最大骨料尺寸和钢筋直径,观察钢纤维混凝土在控制钢筋混凝土结构裂缝模式中的有效性[25]。另一方面,据报道,随着钢纤维的加入,弯曲裂纹的宽度明显减小,而随着钢纤维的加入,第一裂纹载荷和最大载荷也增加了[26]。其他对其他类型纤维的研究,即聚丙烯纤维(PFRC),发现断裂能较高,这是因为PFRC裂解后性能与纤维分布和取向之间有很强的依赖性[27]。关于表征纤维增强混凝土的弯曲试验,发现试样的破坏模式受其跨深比的影响。这意味着它的失效模式是由剪切或弯曲控制的[28]。对于残余强度评估,国际规范和标准已建议对中跨槽口的梁试样进行三点弯曲试验,以通过将槽口深度比(即a /d)确定为0.16 [20]来控制裂纹的发展。 ]。在这项研究中,通过添加两种剂量的钢纤维,一种20 kg / m3(0.25%)(系列1),另一种40倍的钢纤维,研究了缺口深度比对纤维增强混凝土的影响。 kg / m3(0.50%)(系列2),在150毫米×150毫米×600毫米的棱柱形试样上经受弯曲张力(即三点弯曲试验)的试样中。通过在试样的[15,17,18,29]中形成13、25和50 mm的缺口,可以控制裂纹的产生,从而使缺口与深度的比率(a /d)为0.08、0.16,和0.33。本文研究的目的是通过计算特征残余应力来研究对钢纤维残余性能的影响,混凝土面积的减少以及对残余强度的分类,从而确定钢纤维的强度。裂纹的扩大和向缩小的混凝土区域的传播。本研究的新颖之处在于确定缺口深度比(a / d)小于0.16的纤维增强混凝土的残余性能。这与文献中的其他研究不同,后者考虑了更大的陷波深度比。考虑较低的比率可以研究断裂后的行为以及在断裂过程区域中比标准更大的断裂能量。2.理论方面为了理解(a / d)比的影响,有必要提及混凝土中非线性断裂力学的一些概念。一般而言,断裂力学被定义为具有很大实用性的失效理论,因为它利用了高能准则,该准则与强度准则一起考虑了裂纹在结构中的传播[30]。但是,尽管有其实用性,但已发现,混凝土的性能并不能通过线性弹性断裂力学(LEFM)来定义,因为混凝土会形成较大的断裂加工区(FPZ),可承受由于软化而引起的渐进破坏由微裂纹引起的。这导致裂纹尖端释放的能量流减少;同时,裂纹的组合表面积增加,从而提高了断裂过程区(FPZ)的能量吸收能力,因此,要了解混凝土的性能,必须详细阐述非线性断裂力学[ 30]。非线性断裂力学是更好地描述混凝土行为的理论之一。非线性断裂力学是对固体裂纹的研究,该裂纹在自然界中表现出非线性的本构响应,这与考虑了几何和材料线性的LEFM相反[31]。根据所施加的载荷,建筑材料可以表现出几种行为。一些材料几乎没有表现出变形能力或没有变形能力,因此被认为是易碎材料。相反,存在被认为是延性的材料。混凝土是一种特殊情况,因为其行为不能完全表征为易碎品,因为它更可能被描述为准易碎材料。在出现第一个裂纹(应变硬化)后,混凝土显示出拉伸应力的逐渐衰减(应变软化),无论拉伸强度有无改善。因此,总的来说,失败可以不屈服[32,33]出现。要考虑的另一个重要方面是能量吸收的能力,它是通过载荷位移或载荷裂纹打开曲线下的面积获得的。考虑能量吸收是必要的,尤其是在动态载荷下,因为它决定了结构的延展性。在易碎材料中,没有FPZ时,弹性能作为表观能量消散。同时,在易延展材料中,FPZ是可耗散大量能量的塑料区,其能量大于表层能量。对于准易碎材料(例如混凝土),FPZ通常大于易碎材料或易碎材料的区域[34,35],并在破坏前耗散大量能量,从而提供了开裂后的非线性响应(软化) [32]。在确定的体积分数下向混凝土中添加钢纤维可改善延展性并增加FPZ的初始宽度,结果是由于纤维的提取而扩大了区域[36] ]。随机分布的钢纤维在基体开裂后,通过延迟裂纹的形成,限制其生长并减小裂纹尖端的开度位移,显示出最重要的作用,因为纤维通过一种方法抑制了裂纹。提取过程中的桥联机制[37,38]。以同样的方式,钢纤维的使用大大提高了能量吸收和延展性[39]。值得一提的是,混凝土的脆性行为与其抗压强度的增加成正比,而添加钢纤维有助于消除这种脆性,从而导致生产出具有改善的拉伸强度,延展性和抗拉强度的材料。韧性[40,41]。与普通混凝土相比,这种材料显示出延伸的软化分支,其特征在于显着的拉伸残余强度和更高的断裂能[9],后者是衡量准易碎材料断裂过程的主要成分。3.材料和方法为了进行这项研究,共生产了4种普通混凝土混合物,每种所使用的缺口与深度之比为一种。此外,还生产了8种纤维增强混凝土的混合物(每种纤维百分比为4)。使用水泥OPC 40满足NMX-C-414-ONNCCE-2014 [42]的要求生产混合物;标准粉碎的石灰石骨料,最大尺寸为19 mm(3 / 4jj),细度模量为2.42;水;以及聚羧酸类减水剂作为添加剂。使用的钢纤维是“钩端”纤维,长度(lf)为50毫米,直径(df)为1毫米,长径比(lf / df)为50,拉伸强度为1130 MPa;纤维体积分别为0.25%和0.50%,这是根据标准EN 14845-1,2007 [43]推荐的获得残余强度的体积。该标准还规定最大水泥含量为350 kg / m3,水灰比为0.55。表1列出了每种混合物的组成。表1.混合物组成。材料1号2号S-3孜然(kg / w)350350350添加剂(毫升/千克)1.91.91.9碎石(M.S. 19毫米)(kg / m3)810810810沙(kg / m3)102710201014水(kg / m3)193193193纤维(kg / m3)02040空气含量(%)1.82.52.8坍落度(毫米)130115105网络时间6793.1.断裂试验方法 使用了三种不同的混合物,以及四种不同的切口深度(即0、13、25和50 mm)。需要第一混合物作为参考系列(即,体积纤维,Vf = 0%)。用这种混合物制成每个深度为150 mm×150 mm×600 mm的6根光束。因此,总共构造了24个标本。在第二和第三混合物中,分别使用了0.25%和0.50%的纤维体积(Vf)。因此,对于每种混合物和每种切口深度,总共也要制造24个样品。因此,总共48个棱柱形试样由纤维制成,具有上述尺寸和切口深度。通过对72个样品(普通混凝土和纤维增强混凝土)进行了开槽弯曲挠曲试验,评估了添加钢纤维对开裂后性能的影响,并对其进行了描述。相应的陷波深度比(a / d)分别为0、0.08、0.16和0.33。值得一提的是,开槽步骤是根据标准EN 14651-2005进行的,其中常见的开槽深度为25 mm [20]。在该实验程序中,使用了裂口张开位移法(CMOD)相对于施加的载荷作图。开口的测量采用夹式引伸计进行,标距长度为20 mm,行程为+12 mm / –2 mm(见图1a和2a),目的是估计通过防止诱发裂纹的扩大,具有通过样品的裂纹面传递纤维应力的能力。此外,将线性范围为12.7 mm的线性可变差动变压器(LVDT)放置在试样的中跨处,以测量由于施加的载荷引起的位移,并确定钢纤维对钢的韧性和延展性的贡献。复合材料(见图1b和2b)。 (a) (b)图1.棱柱形试样的拉伸弯曲试验。 (a)通过引伸计夹式Epsilon品牌测量裂纹口的开口。 (b)通过VISHAY品牌的线性可变差动变压器(LVDT)测量样品中跨的挠度。图2.三点弯曲测试的配置,尺寸以mm为单位。 (a)裂纹口的测量。 (b)用LVDT测量中跨位移。3.2.负载和应力处于比例极限实验结果从所述负载在比例极限或从负载为初裂(FL),其为负载的记录到为0.05mm并[a CMOD较大值而获得9,36 ]。借助于等式(1)[ 20 ]计算出在出现第一裂纹时相应的作用应力。其中f L =比例极限处的应力(N / mm 2),F L =比例极限处的载荷(N),L =试样的跨度(mm),b =试样的宽度(mm),hsp =试样顶面与引起裂纹的尖端之间的距离(毫米)。3.3.正态和特征残余应力在剩余阶段,钢纤维的贡献至关重要。在裂后阶段,该贡献是通过法向应力(f Rj),所测CMOD的每个特定值获得的,并由等式(2)计算[ 20 ]。其中f R,j =在点j处的法向残余应力(N / mm 2),f Rk,j =在点j处的特征残余应力(N / mm 2),F R =给定裂纹口开口的载荷位移测量。f R,1,f R,2,f R,3和f R,4的值是0.5、1.5、2.5和3.5 mm裂纹嘴开口的法向残余应力(N / mm 2) , 分别。以类似的方式,f Rk,1,f Rk,2,f Rk,3和f Rk,4的值是0.5、1.5、2.5和3.5 mm的特征残余应力(N / mm 2)。分别开口。在这项研究中,特征残余强度的评估是根据CEB-FIP模型代码2010 [ 44 ]中建立的程序,通过方程式(3),以及在Molins和Arnau 2012中获得的因子进行的;RILEM TC-162,2003,在所列出的表2 [ 45,46 ]。 其中,n =测试样本的数量,k xN =当总体集合的变异系数已知时的统计因子,k xn =当总体集合的变异系数未知时的统计因子。 表2. 系数k x与被测样品数量的关系。n123456810κξγ2.312.011.891.831.81.771.741.72κξγ3.372.632.332.1821.92 3.4.断裂能纤维增强混凝土试件的断裂能估算采用了两种模型,它们各自的参数和原理互不相同。对于模型1,Barros等人提出。[ 47 ]如式(4)所示,需要诸如样品质量和最终位移的测量参数。另一方面,对于第二个模型,需要使用图[ 48 ]。Kazemi等人提出的模型2。[ 48 ]由等式(5)表示,并假设将试样断裂所需的功与破裂表面成正比:其中GF=总断裂能(N/ m); Wf=曲线载荷下的面积与裂缝开度(或位移)的关系,是由于断裂引起的功(N-m)或(J);m =样品质量(kg); a =样品的总长度(l)与跨度(支撑之间的长度)(L)之间的关系; a0 =初始切口深度(m); b =样品宽度(毫米); d =光束深度(米); g =重力加速度常数(9.8 m/ s2);Su=测得的位移或裂纹开口的最大值(m); S =装置的标准偏差(N /mm2);L =试样长度(毫米); r =试样顶面与裂纹尖端之间的距离(m)。4.结果与讨论4.1.比例极限行为图3显示了三个系列中每个系列在比例极限下的负载获得的结果。可以观察到,随着切口深度比(a/ d)的增加,负载能力降低,其中对于比率(a/ d)分别降低了33%,53%和66%分别为0.08、0.16和0.33。因此,随着切口-深度比的增加,混凝土变得易于破裂失败。这种现象是由于断裂加工区(FPZ)的减少,也称为韧带长度,它在开裂过程中允许更高的能量耗散[48]。 Zihai Shi [49]也认识到了这种负荷的减少,其中韧带长度的减少导致峰值负荷的减少。图3. 比例极限下的实验行为。以相同的方式,在图3中,还可以观察到,负载阻力主要取决于混凝土的阻力面积,而不取决于所添加的纤维量。这可以通过观察在不同纤维体积Vf下每个比率(a / d)所获得的相似载荷值来识别,这表明,对于第一个裂纹发展之前的阶段,纤维几乎或根本没有影响复合材料的强度。从该行为,获得了一般图形(参见图4),其行为也可以用公式(6)描述。 图4. 比例极限下的一般行为。表3列出了每个研究系列的第一个裂纹出现所需的应力。在该表中,计算的应力趋于随着切口深度的增加而减小。另外,对于那些没有初始刻痕的试样,与具有初始刻痕的试样相比,要求更高的应力才能使第一个裂纹出现。与最初产生缺口的混凝土面积相比,这种行为与试样中混凝土面积更大。但是,值得注意的是,(a / d)= 0的试样显示出较大的变异系数(CV),这是因为未控制开裂过程,并且在试样的整个长度上裂纹可能出现在不同的区域,导致残余行为的变化。表3. 在比例极限(N / mm 2)处的计算应力。对于系列1和2,获得的结果分散最少,比率(a / d)= 0.16,这是标准EN 14651,2005 [ 20 ]所建议的陷波深度比。与所研究的其余(a / d)比率相比,观察到了裂化过程的控制。此外,比率(a / d)= 0.16时,在后裂化阶段中获得了纤维性能的更代表性的行为。而且,以该比率,深度足够大,以利于在所需区域中出现第一裂纹,并产生足够大的混凝土区域,以使纤维在残余阶段中适当地传递应力。4.2.破解后行为图5-8显示了在弯曲拉伸试验中,钢纤维系列和每种(a / d)比的结果。在这些图中,可以注意到,如前所述,在比例极限(曲线的线性部分)处的负载与所用纤维的数量无关。此外,还可以观察到,纤维的主要作用是在后裂化阶段获得的[13,15,50]。 图5. (a / d)= 0的弯曲拉伸试验曲线:(a)系列1和(b)系列2。 在对应于系列2的图中,与对应于系列1的那些相比,在裂后阶段显示了更大的性能,其残余载荷等于或什至大于在第一裂化过程中获得的平均载荷。发生阶段。由于使用了大量的纤维(即,Vf = 0.50%),这导致硬化行为,这通过增加通过裂纹面传递应力的能力而改善了裂纹后阶段的性能。图6. (a / d)= 0.08的弯曲拉伸试验曲线:(a)系列1和(b)系列2。图7. (a / d)= 0.16的弯曲拉伸试验曲线,(a)系列1,(b)系列2。通过分析这两个获得的曲线的结果,在图5-8中,可以在残余阶段以小于4 mm CMOD的值观察到样品的最大性能,这相当于在3.64 mm处的位移。中跨,之后开裂性能会降低。这是最重要的,因为通常在计算光纤性能时考虑该值,对于中跨度的3.5mmCMOD或3mm挠度,该值是获得的[9]图8.(a / d)= 0.33的弯曲拉伸试验曲线:(a)系列1和(b)系列2。 4.3.正常残余应力在图9中,显示了两个研究系列的法向残余应力(fR,j)的结果。基于所使用的(a / d)比率,可以注意到,从图9a-d中可以看出,比例极限处的载荷值是一致的,与所使用的纤维量无关。这表明纤维在第一次破裂发生之前的阶段几乎没有影响。还值得注意的是,通过增加比率(a / d),通过增加纤维的剂量可以改善所产生的残余性能。例如,比率(a / d)=0的样品的残余性能增加了61%。同时,(a / d)比分别为0.08、0.16和0.33的序列分别增加了157%,129%和86%。以相同的方式,对于0.08至0.16的比率,随着纤维剂量的增加而达到最大性能,而对于0.33,其残余性能降低。4.4.特征残余应力在图10a,b中,显示了系列1和2的每个(a / d)比的特征残余应力(fRk,j)的实验结果,以及每种情况下它们的相应平均应力曲线。可以注意到,特征残余应力对法向残余应力的变化非常敏感。这可以在图10a中得到验证,图10a中的比率(a / d)= 0和0.08显示的残余性能低于从比率(a / d)= 0.16和0.33获得的残余性能。因此,比率(a / d)= 0和0.08不符合标准EN 14845-2,2006 [41]中确定的最低要求。对于系列1,通过增加比值(a / d),可以在开裂后阶段获得更合适的性能,这表明在试样表面上有足够的应力传递。另一方面,在图10b中,通过使用大量的纤维(系列2),特征残余应力满足标准的最低要求[41]。但是,关于系列2的比率(a / d)的行为与在系列1中获得的结果不一致,因为比率(a / d)= 0.08提供了所有所用比率中的最佳残留性能(请参见图10b)。这可能是纤维数量影响的结果,纤维数量可以在较大的混凝土区域中更好地分布。对于两个系列,比率(a / d)= 0均显示最差的性能。(b) (b) (c) (d)图9.纤维系列和每个研究的(a / d)比(a)0,(b)0.08,(c)0.16和(d)0.33的残余法向应力。切口深度比对钢纤维混凝土开裂后行为的影响(下) 点击:查看更多其他分类文章 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:mdpi
2021-01-19 19:00:19