福昕翻译

>

医学翻译

心脏骤停中的ECMO:文学叙事回顾(结论)
查看心脏骤停中的ECMO:文学叙事回顾 7. 神经学结果 不管插管时的心率如何,ECPR都能优化因室颤和/或心动过速(VF / VT)导致难治性CA患者的器官灌注。通过达到血液动力学稳定性,ECPR可以阻止缺血性病变的发展,而不必获得自发性循环(ROSC)的恢复。因此,它为纠正长时间的心肺复苏过程中出现的严重代谢紊乱提供了时间,并使治疗可能导致难治性VF / TV持续的潜在病因成为可能。这些稳定策略与难治性CA患者的生存改善和令人满意的神经学预后有关[10,69,79]。此外,ECPR能够使患者在36℃的恒定温度下稳定24小时[80]。 在明尼苏达大学的ECPR队列研究中,在开始ECMO之前受益于CPR协会(持续20至29分钟)的患者中,有100%的患者神经功能预后良好。常规心肺复苏组的结果微乎其微,其中只有24%的患者存活下来并具有令人满意的神经学预后。与传统的心肺复苏术组相比,心肺复苏术显示了最长98分钟的心肺复苏持续时间。ECMO发作前的缺血性损伤似乎是预测预后的决定性因素。在同一队列中,超过29分钟的CPR,每10分钟的存活率下降25%[81]。先前的研究还表明,CPR的持续时间与ECPR期间的生存之间存在联系[4,16,82]。 ECPR可以在延长心肺复苏后提高生存率,但是避免对那些仅使用常规心肺复苏就可以幸免的人造成伤害是值得关注的。 OHCA受益于常规CPR的患者的最新研究表明,由医疗专业人员在最长28至39分钟的CPR中,有幸存的神经系统状态令人满意的患者中有99%接受了ROSC [83-86]。 大多数ECPR计划都要求将患者运送到医院植入ECMO。因此,至关重要的是估计传输指示的时间。确实,将患者转移至心脏骤停状态可能会降低复苏的有效性,并有可能阻止某些患者的生存。雷诺兹等。 [85]研究了从观察性研究中收集到的符合ECPR标准的患者中晚期疗法与转运风险之间的关系。他们包括年龄在18至65岁之间的患者,在有证人在场的情况下发生心脏骤停,在10分钟内开始进行心肺复苏,并且没有心搏停止作为最初的心律。他们发现90%的神经功能预后良好的幸存者在21分钟内有ROSC,如果CPR延长至20分钟以上,则存活的神经功能预后良好的可能性为8.4%。作者建议在进行ECPR运输之前,先进行21分钟的标准复苏。 在临床实践中,建议立即转运对最初的复苏措施无反应的心脏骤停患者是合理的。实际上,在欧洲的建议中,执行第一批专门的复苏措施大约相当于10分钟。因此,建议将这段时间用于考虑ECPR的运输。如前所述,在“转移决定”和“有效转移”之间加上最短的时间后,可以将转移时间提高到大约20分钟的CPR。 一些中心建议使用自动按压板进行胸部按压。但是,在最近的荟萃分析中,证据水平并不表明包括机械式胸部按压设备的CPR算法优于传统的手动胸部按压技术。在无法进行高质量的手动胸部按压或危险的情况下(例如,很少有救生员,低温CA中的救护人员长时间使用CPR,在救护车中,受过训练的医疗服务提供者使用的机械胸部按压器)是手动胸部按压的合理替代品。在血管造影室或ECPR准备期间)[87]。此外,其他研究者表明,在使用装有机翼方法的担架上移动住院的CA患者时,胸部按压可以产生高质量的胸部按压[88]。 ECPR成功的时间竞赛对此类协议的实施具有重要意义。对于目前的院前复苏技术,建议建议在实施ECMO治疗难治性OHCA之前,最佳的CPR时间间隔为30分钟。但是,ECPR的生存益处可能会超过60分钟。因此,ECPR程序应旨在在不到30分钟的时间内使可插管的患者数量最大化,而不必排除复苏时间较长的患者。 院前护理的未来优化还可以提高与ECPR相关的生存率。院前CPR策略可改善CPR的灌注或减少患者的代谢需求,可延长有效CPR的时间,从而延缓缺血性损伤的发作。院前ECPR的启动也可以提供快速的稳定。迄今为止,最近发表了关于ECPR在OHCA患者中应用的最大研究。它提供了有关该策略有效性的新信息。 Bougouin等。 [16]报道了巴黎大都会地区超过13,000例OHCA病例。在接受常规心肺复苏术的12396名患者中,有8.6%(1061)可以存活出院,而523名ECPR患者中只有8.4%(44)。尝试进行ECPR,但11%(58)的患者无效。 ECPR组中有利于生存的因素包括短暂恢复自发性循环(ROSC)以及ECPR之前的最初令人震惊的心律。应当指出,院前ECPR与入院后接受ECPR的患者相比,与生存率更高(OR 2.9,95%CI 1.5–5.9,p = 0.002)和更有利的神经系统结果(OR 2.9,95%CI 1.3–6.4,p = 0.008)相关。 但是,这项研究有很多局限性,包括选择偏见。启动ECPR的决定是由每个临床医生自行决定的,而不是严格按照预先建立的算法,从而提供了大量潜在的混淆因素。 ECPR患者基线描述的差异表明了这一点。目击者较年轻且更倾向于从CPR中受益(81%vs. 49%,p <0.001),但更相关的是,他们接受了超过30分钟的长时间CPR(99%vs. 77%,p <0.001) 。作者试图通过多元分析(OR 1.3,CI 95%0.8-2.1,p = 0.24)或倾向分析(OR 0.8,95%CI 0.5-1.3,p = 0.41)校正已知的混杂因素,但是他们无法确定ECPR是否与医院环境中的生存改善相关。研究亚组之间存在许多差异,尤其是在没有ROSC的患者和具有不可电击节律的患者之间。 ECPR可能在这些亚组中表现出不同的结果,也许将来需要专门研究对其进行研究[16]。 更相关的是,未检查神经系统结局和长期生活质量。希望不将分析局限于医院的死亡率,而要分析诸如功能恢复和具有可接受的神经后遗症的长期存活的因素[89,90]。这项研究将继续成为机械支持设备的信奉者,以及他们在改善心脏骤停过程中可能发挥的作用方面。这将刺激该领域的进一步研究,以纠正在患有OHCA的患者中观察到的不良结果。受益于ECPR的患者与接受常规RCP治疗的患者在生存率上没有统计学上的显着差异,这需要重新评估ECPR在OHCA患者中的作用。这最后的出版物确实具有许多品质,包括大量患者,参与小组的功能经验以促进ECPR的迅速实施及其提供“真实”数据的多中心观察设计。最后,ECPR是一种机械支持形式,需要特别复杂和庞大的人力和技术资源组织。它还需要在极端条件下进行插管的从业人员非常高的专业知识。因此,对于维持这些类型的计划至关重要的是,要确保有足够的干预措施,并允许相关专业人员的大量接触,以维持高质量的护理标准。 8. 结论 CA仍然是常见的死亡原因和主要的公共卫生问题。迄今为止,常规的心肺复苏术是唯一可用于改善这些患者预后的有效复苏程序。 ECMO是一项复杂且价格相对较高的技术,需要专业知识。因此,它不能在所有医院都使用,而必须在定期执行这些程序的高容量中心进行。ECPR可使传统CPR难治的CA患者获得血液动力学和呼吸稳定,并通过保留器官灌注来开始治疗CA的根本原因。但是,目前的证据并不支持在所有难治性CA患者中常规使用ECPR的建议。因此,似乎关键适当选择那些谁可能会从它的使用中受益患者。这可能包括存在即将死亡风险的患者,这些患者具有专门设计的评分,可以预测与使用ECPR相关的生存获益。使用它的理想好处将是进行足够的复苏,从而促进中长期生存可接受的神经系统结果。最后,通过额外的医院ECPR来最佳管理难治性CA患者的方案仍然是研究的活跃领域。 作者贡献:A.D.C.设计研究,选择文章,收集数据并撰写手稿。 B.A.选择文章,收集数据并撰写手稿。多发性硬化症。写手稿,N.M。收集数据并写手稿C.B.收集数据并写手稿K.B。设计研究并撰写了R.G.设计研究,选择文章,收集数据并撰写手稿。所有作者均已阅读并同意该手稿的发行版本。 资金:这项研究没有获得外部资金。 数据可用性声明:不适用。 利益冲突:作者声明没有利益冲突。 参考文献(展示部分文献,可去原文章查看全部) 1. Wong C.X .;布朗,答:刘德华; Chugh,S.S .;阿尔伯特,C.M .;卡尔曼(J.M.);桑德斯(Sanders),《心脏猝死的流行病学:全球和区域观点》。心肺圈。 2019,28,6-14。 [CrossRef] 2. 严S.甘Y;江N.王荣;陈Y罗Z.宗庆;陈珊; Lv,C.接受心肺复苏的成人门诊心脏骤停患者的总生存率:系统评价和荟萃分析。 Crit Care 2020,24,61. [CrossRef] [PubMed] 3. 陈Y林建伟;于慧Ko,W.J .;Jerng,J.S.; Chang,W.T .;陈伟杰;黄南昌; Chi,N.H .;王超等。成人体外循环辅助心肺复苏术与常规心肺复苏术在院内心脏骤停的成年人中的关系:一项观察性研究和倾向性分析。柳叶刀2008,372,554–561。 [CrossRef] 4. Wengenmayer,T。罗姆巴赫,S。 F.拉姆斯霍恩; Biever,P.;波德角; D.Duerschmied; Staudacher,D.L.低流量时间对体外循环心肺复苏(eCPR)后存活的影响。暴击护理2017,21,157。[CrossRef] [PubMed] 5. 坂本N. Morimura;长浅井Y.横田奈良市长谷Y. Tahara; T. Atsumi;集团,S.-J.S。成人院外心脏骤停的体外心肺复苏与常规心肺复苏:一项前瞻性观察性研究。复苏2014,85,762-768。 [CrossRef] [PubMed] 6. Le Guen,M。 Nicolas-Robin,A .;卡雷拉,S。 M.Raux; Leprince,P .; B.Riou;O. Langeron。院外难治性心脏骤停后的体外生命支持。暴击护理2011,15,R29。 [CrossRef] 7. E.香川;井上,我。川越石原市Y. Shimatani,库里苏(S. Yakama,Y .;戴K; O.Takayuki;永永等。评估使用体外生命支持进行心肺复苏的院内和院外心脏骤停患者的结局和差异。心肺复苏2010,81,968–973。 [CrossRef] 8. Danial,P.;哈贾格(D.) Nguyen,L.S .; Mastroianni,C .; Demondion,P .; M·施密特Bougle,A。 J. Leprince,P .;康贝斯;等。经皮与手术股-股-静脉-ECMO:倾向评分匹配研究。重症监护医学。 2018,44,2153–2161。 [CrossRef] 9. 贝莱佐(J.M.) Z.Shinar;戴维斯(Davis)公元前Jaski; Chillcott,S。 Stahovich,M .;沃克角; Baradarian,S。Dembitsky,W.急诊医师启动的体外心肺复苏。复苏,2012,83,966-970。 [CrossRef] 10. Lamhaut,L .; Hutin,A .; E. Puymirat; Jouan,J .; J.H.拉斐伦; Jouffroy,R .;贾弗里达格隆角;An,K .;杜马斯F.等。院前体外循环心肺复苏(ECPR)策略治疗难治性院外心脏骤停:一项观察性研究和倾向性分析。心肺复苏2017,117,109–117。 [CrossRef] 11. Megarbane,B .; Leprince,P.;Deye,N .; Resiere,D。 Guerrier,G。 Rettab,S。西奥多(J.) Karyo,S .;甘杰巴赫(I.) Baud,F.J.体外生命支持难治性心脏骤停的医疗重症监护室的紧急可行性。重症监护医学。 2007,33,758–764。[CrossRef] [PubMed] 12. 奥特加·德巴隆(I.)霍恩比(L.谢米(S.D.);Bhanji,F.; Guadagno,E.成年人难治性院外心脏骤停的体外复苏:对国际惯例和结果的系统评价。心肺复苏2016,101,12–20。[CrossRef] [PubMed] 13. 唐娜(J.E.);新泽西州约翰逊;格林伍德,J。盖伊斯基(D.F.); Z.Shinar;贝勒佐(J.M.);贝克尔Shah,A.P .; S.T. Youngquist;马林,M.P .;等。美国急诊科体外心肺复苏(eCPR)程序的实践特征:急诊科体外膜氧合(ED ECMO)的最新技术水平。心肺复苏2016,107,38–46。 [CrossRef] [PubMed] 14. Poppe,M。韦瑟角; M. Holzer; Sulzgruber,P .;达特勒M. Keferbock; Zeiner,S。 E. Lobmeyr;范·图尔德(R.齐格勒,A .;等。急诊部门利用紧急体外生命支持的“外出就诊”院外心脏骤停候选人发生率:一年回顾。心肺复苏2015,91,131–136。 [CrossRef] [PubMed] 15. 王超周N;贝克尔(L.B.);林建伟;于慧Chi,N.H .;南卡罗来纳州Hunag;Ko,W.J .;Wang,S.S .;曾L.J.等。院外心脏骤停的体外心肺复苏的改善结果–与院内心脏骤停的体外抢救的比较。复苏2014,85,1219–1224。 [CrossRef] [PubMed] 16. W. Bougouin;杜马斯F. Lamhaut,L .; E.Marijon。 Carli,P .;康贝斯; Pirracchio,R .; N.Aissaoui; N.卡拉姆; Deye,N .;等。院外心脏骤停的体外心肺复苏:一项注册研究。欧元。 《心脏》杂志,2019,41,1-11。 [CrossRef] 17. 英国Longo; Ciuffreda,M .;达安德里亚(D’Andrea);礼貌,北; Locher,J。 Denaro,V.全膝关节置换术中的全聚乙烯与金属支持的胫骨组件。膝盖手术。体育Traumatol。关节镜2017,25,3620–3636。 [CrossRef] 18. T.M. Atkinson; Ohman,E.M .;奥尼尔(W.W.);Rab,T.;雪茄,J.E.;美国心脏病学院介入科学委员会。进行经皮冠状动脉介入治疗的患者机械循环支持的实用方法:干预观点。 JACC心血管。互动2016,9,871–883。 [CrossRef] 19. A.R. Garan; A. Kirtane; Takayama,H.重新设计急性心肌梗死并发心源性休克的患者的护理:“休克团队”。 JAMA Surg。 2016,151,684–685。 [CrossRef] 20. Tchantchaleishvili,V.;华盛顿州哈利南;梅西(H.T.)呼吁建立有组织的全州网络来管理急性心肌梗死相关的心源性休克。 JAMA Surg。 2015,150,1025-1026。 [CrossRef] 21. A.R. Garan;埃克哈特武田(K.) V.K.托普卡拉; Klerkin,K .;弗里德·J。 A.Masoumi; R.T. Demmer; Trinh,P .; Yuzefpolskaya,M .;等。急性心肌梗死并发心源性休克后短期机械循环支持设备的存活率和断奶能力的预测指标。欧元。心脏J.急性心血管。护理2018,7,755-765。 [CrossRef] [PubMed] 22. 穆勒(G. E.弗莱彻; Lebreton,G .;卢伊特(C.E.); J.L. Trouillet; N.布雷乔特; M·施密特Mastroianni,C .;查斯特(J. Leprince,P .;等。急性心梗性心源性休克的VA-ECMO后的ENCOURAGE死亡率风险评分和长期结局分析。重症监护医学。 2016,42,370–378。 [CrossRef] [PubMed] 23. 巴拉特(F.帕帕拉多(F.奥洛里兹(美国); Bisceglia,C .;Vergara,P .;西尔伯鲍尔(Silberbauer),J。 N.Albanese。西里杜(M. D'Angelo,G .; Di Prima,A.L .;等。体外膜氧合对心动过速消融的血流动力学支持。大约心律失常电生理。 2016,9,e004492。 [CrossRef] [PubMed] 24. 布鲁纳(M.E.);西恩哈特(N. Shah D .;新泽西州Licker; Cikirikcioglu,M .;布罗查德湖Bendjelid,K .; Giraud,R.体外膜氧合支持是电风暴相关心源性休克患者康复的桥梁。上午。 J. Emerg。中2013,31,467.e1–467.e6。 [CrossRef][PubMed] 25. Guglin,M .;扎克(M.J.); V.M.巴赞; B.博兹库特; ElBanayosy,A .; Estep,J.D .; J.Gurley;尼尔森(K.)马利亚拉河;G.S. Panjrath;等。成人腹膜动脉ECMO:JACC科学专家小组。J.上午Coll。乙二醇。 2019,73,698–716。 [CrossRef] 26. 罗森茨威格(E.B.);布罗迪(D.哥伦比亚特区艾布拉姆斯; Agerstrand,C.L .; Bacchetta,M.体外膜氧合作为第1组肺动脉高压中急性右心衰竭的新型桥接策略。 ASAIO J.2014,60,129–133。 [CrossRef] 27. 班菲M. Pozzi;西恩哈特(N.布鲁纳(M.E.);塔索(Dassaux) J.F. Obadia; Bendjelid,K.; Giraud,R.静脉-静脉体外膜氧合:插管技术。 J.索拉克。 Dis。 2016,8,3762–3773。 [CrossRef] 28. R.P. Barbaro; F.O. Odetola;肯塔基州基德韦尔;马萨诸塞州帕登;巴特利特(R.H.);戴维斯,医学硕士;安妮奇(GM)医院级体外膜氧合情况与病死率的关系。体外生命支持组织注册表分析。上午。 J.呼吸暴击护理医学。 2015,191,894–901。[CrossRef] 29. 布鲁克曼(L.M.);霍尔兹格拉夫(B. K.帕尔默; Frenckner,B.斯德哥尔摩的经验:体外膜氧合的医院间转运。暴击护理2015,19,278。[CrossRef] 30. 诺亚,马萨诸塞州;皮克(Geek)芬尼(S.J.);格里菲斯(美国)哈里森(D.A.)格里夫(R.马萨诸塞州萨迪克; Jek Sekhon; D.F. McAuley;英国Firmin;等。转介到体外膜氧合作用中心和2009年严重A型流感(H1N1)患者的死亡率。 JAMA 2011,306,1659–1668。[CrossRef] 31. 皮克(Geek) Mugford,M .; Tiruvoipati,R。威尔逊艾伦(E.塔拉尼(M.M.)希伯特(C.L.); A.Truesdale Clemens,F。库珀,北;等。常规通气支持与体外膜氧合治疗严重成人呼吸衰竭(CESAR)的疗效和经济评估:一项多中心随机对照试验。柳叶刀2009,374,1351–1363。 [CrossRef] 32. 莫雷特,M。班菲,C。 Sartorius,D .; Fumeaux,T。 Leeman-Refondini,C .; Sologashvili,T。重用,J。 Nowicki,B。Mamode-Premdjee,J。塔索(D.)等。[“移动” ECMO]。版本号中瑞士,2014,10,2368–2374。 33. Benzoni,E .;Terrosu,G.;布雷萨多拉塞拉托,F。A. Cojutti;E.米兰; Dado,G .; Bresadola,F.新辅助放化疗联合手术的临床结局和预后因素分析:腹膜内与腹膜外直肠癌。欧元。 J. Cancer Care(Engl。)2006,15,286-292。 [CrossRef] [PubMed] 34. 澳大利亚和新西兰体外膜氧合(ANZ ECMO)流感调查员;戴维斯A.琼斯(D.) M. Bailey; Beca,J .;贝洛莫河;北布莱克韦尔;福雷斯特,P。加塔斯(D.) E.格兰杰等。 2009年甲型(H1N1)流感急性呼吸窘迫综合征的体外膜氧合。 JAMA 2009,302,1888-1895年。 [CrossRef] 35. 北帕特罗尼蒂; Zangrillo,A .; Pappalardo,F。佩里斯(Peris)Cianchi,G .;布拉斯基,A .; Iotti,G.A .;阿卡丹,A。 Panarello,G .;拉涅利(Vani)等。意大利ECMO网络在2009年甲型H1N1流感大流行中的经验:为严重的呼吸道紧急暴发做准备。重症监护医学。 2011,37,1447-1457。 [CrossRef] 36. Lamhaut,L .;Jouffroy,R.; M.Soldan;菲利普(P.德鲁兹贾弗里达格隆角;Vivien,B .;Spaulding,C .; An,K .;等。非外科手术治疗院外难治性心脏骤停的安全性和可行性。心肺复苏2013,84,1525–1529。 [CrossRef] 37. 艾布拉姆斯(D. A.R. Garan;阿卜杜里(Abdelbary); Bacchetta,M。巴特利特(R.H.);贝克(J. Belohlavek,J。陈Y范E. N.D.弗格森;等。关于组织成人心衰ECMO计划的立场文件。重症监护医学。 2018,44,717–729。 [CrossRef] 38. 班菲M. Pozzi;布鲁纳(M.E.);里加蒙蒂; N. Murith;穆格尼J.F. Obadia;Bendjelid,K .; Giraud,R.静脉动脉体外膜氧合:不同插管技术的概述。 J.索拉克。 Dis。 2016,8,E875–E885。 [CrossRef] 39. 吉罗(R.班菲Bendjelid,K.在ECMO静脉插管放置中应强制执行超声心动图检查。欧元。心脏J.影像学杂志2018,19,1429-1430。 [CrossRef] 40. 阿罗约Bendjelid,K .;罗伯特·埃巴迪(H.里加蒙蒂;西恩哈特(N. Giraud,R.疑似股骨股静脉静脉体外生命支持中的动脉痉挛。 ASAIO J.,2017,63,e35-e38。 [CrossRef] 41. 法国复活委员会,C。法国兴业银行D'anesthesie等,R。法国兴业银行法国法语学校de Chirurgie Thoracique等,C。法兰西大学医学会法国兴业银行;法语国家复活和应急小组法国兴业银行;法兰西复兴社会学院,F。在难治性心脏骤停中使用体外生命支持的适应症指南。法国卫生部。安麻醉神父雷尼姆2009,28,182–190。 [CrossRef] 42. 金俊杰;Jung J.S .; Park,J.H .; Park,J.S .; Hong,Y.S .;李世伟一项倾向匹配的研究:预测院外心脏骤停患者良好神经系统结局的体外心肺复苏最佳过渡时间:一项倾向匹配研究。暴击Care 2014,18,535。[CrossRef] [PubMed] 43. 雷诺兹J.C. Frisch,A .; J.C. Rittenberger; C.W. Callaway。院外心脏骤停后复苏努力的持续时间和功能结局:我们什么时候应该改用新疗法?发行2013,128,2488-2494。 [CrossRef] [PubMed] 点击:查看更多医学文章 使用文档翻译功能 使用图片翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:mdpi
2021-02-02 20:19:57
心脏骤停中的ECMO:文学叙事回顾
通过 阿曼丁·德·沙里埃(Amandine DeCharrière),本杰明·阿苏林(Benjamin Assouline),马克·谢恩娜塔莉·曼莎(Nathalie Mentha),卡洛·班菲卡里姆·本杰利德(Karim Bendjelid),和拉斐尔·吉罗(RaphaëlGiraud) 1.瑞士日内瓦大学医院重症监护室,1205;瑞士; amandine.decharriere@hcuge.ch(A.D.C.); benjamin.assouline@hcuge.ch(文学士); marc.scheen@hcuge.ch(硕士); karim.bendjelid@hcuge.ch(K.B.) 2.日内瓦大学医学院,1205瑞士日内瓦; nathalie.mentha@hcuge.ch(N.M.);carbanfi@gmail.com(C.B.) 3.日内瓦血液动力学研究小组,1206年,日内瓦,瑞士 4.米兰圣多纳托医院集团心胸外科Sant’Ambrogio医院,米兰大学心脏外科主任,20149意大利米兰 *应与之联系的作者。摘要:心脏骤停(CA)是常见的死亡原因,也是主要的公共卫生问题。迄今为止,常规的心肺复苏术(CPR)是唯一可以有效影响预后的有效复苏方法。体外膜氧合(ECMO)是一项复杂且昂贵的技术,需要专业技术知识。并非所有医院都将其视为护理标准,仅应在大容量医院中使用。 ECMO与CPR结合被称为ECPR(体外心肺复苏),它可使传统CPR难治的CA患者的血流动力学和呼吸稳定。该技术可在保持器官灌注的同时并行治疗CA的潜在病因。但是,目前的证据并不支持在所有难治性CA患者中常规使用ECPR。因此,病人适当选择谁可以从这个过程中受益是关键。通过执行高质量的CPR并促进获得ECPR来减少低血流的持续时间,可以提高难治性CA患者的生存率。确实,受益于ECPR的患者似乎具有更好的神经功能。本篇叙事综述的目的是介绍有关ECPR的最新文献,并阐明其潜在的治疗作用,并对设备及其设置,患者选择过程和患者进行深入的解释。 ECPR后的管理。关键词:体外膜氧合;ECMO;心脏停搏;ECPR 1. 介绍心脏骤停(CA)是主要的公共卫生问题。在北美和欧洲,其发病率约为每100,000例50至100例[1]。心血管病因占记录病例的一半。全世界接受心肺复苏(CPR)的院外心脏骤停(OHCA)患者的30天生存率是全球的10.7%[2]。确实,这种差的存活率引起了人们对传统复苏技术联合方法的开发的兴趣,该方法是通过体外心脏压缩和体外生命支持通过体外体外膜氧合作用除颤(ECMO)。因此,体外心肺复苏已经成为患有CA的患者的救生方法,该CA被认为对常规复苏是难治的。在对CA的主要病因进行调查并提供病因治疗的同时,ECPR有助于维持器官灌注。最近,有证据表明,用ECPR治疗的院内心脏骤停(IHCA)显示有希望的生存率在20%至45%之间波动[3,4]。另一方面,对非住院患者(院外CA:OHCA)进行的研究显示出较差的结果[5]。尽管如此,有关OHCA管理的最新指南详细说明了使用ECPR的可能性,但不是作为常规护理标准。更好的生存率。 IHCA归因于更早实施更好的复苏质量,以及更快地获得ECPR。此外,在研究使用ECPR的研究时,常规心肺复苏(CPR)的时间似乎对生存率有负面影响[6]。当校正低流量期的持续时间时,用ECPR处理的OHCA和IHCA之间的生存差异会消失[7]。因此,通过促进获得ECPR似乎可以缩短CPR时间并改善CA后的生存率[8]。大量研究表明,ECPR在心脏导管室,急诊室和院前环境中的有效性[9-11]。但是,正如最近发表在两篇评论文章中的那样,各中心之间的ECPR计划存在很大差异,并且是缺乏标准化的原因[12,13]。在本文中,作者介绍了CA患者ECPR的最新文献。2. 方法本文针对该文献进行了叙述性综述,而不是系统性综述,重点是ECRP在常规心肺复苏难治性心脏骤停中的作用。它包括2000年至2020年10月底在MEDLINE / PubMed数据库中发表的文章。搜索工具栏集中包括以下术语:“体外膜充氧”或“ ECMO”或“ ECLS”或“ ECPR”和“心脏”逮捕”。总共确定了1552篇可能相关的文章。阅读标题和摘要后,选择了75篇文章进行全面分析。最后,对所包括论文的参考文献进行筛选,以查找在最初的文献搜索中找不到的其他材料,并且不采用语言限制。 3. ECPR的实施地点尽管有国际建议,但复苏程序在一个中心与另一个中心之间有所不同。建立ECPR的后勤方式也有所不同。许多中心建议采用“偷窥逃跑”的方法,用救护车将患者迅速转移到ECPR中心[9,14]。或者,使用能够在OHCA上启动ECPR的移动式紧急复苏单元(SMUR)的“住宿和治疗”态度也已被证明是替代选择[10]。考虑到应该在CA的60分钟内启动ECPR的事实,最佳策略仍有待确定。每个社区的设施和经济医疗服务均起着主要作用。在有或没有紧急医疗服务(EMS)的医疗机构中使用的“隐蔽式运行”方法在ECPR的迅速启动中已显示出局限性[14,15]。在巴黎(法国),EMS于2011年建立了院前ECPR计划。法国其他一些城市(里尔里昂和佩皮尼昂)也使用了类似的计划。与医院启动的ECPR相比,这种方法证明了OHCA后低血流时间的减少,具有相似的ECPR启动时间和并发症[10]。但是,根据Bougouin等人的说法。 [16]在2011年至2018年期间在巴黎诊断的13,000 OHCA中,有525例受益于ECPR的启动,其中389例在医院内,136例在医院外。此外,经历过ECPR的患者和接受常规复苏的患者在死亡率上没有差异。ECPR的启动需要经过专门培训且组织良好的团队。此外,尽管ECPR团队专注于插管过程,但坚定的团队负责人必须监督复苏过程。团队配置会根据当地限制,ECPR提供中心内的组织和可用的人力技能而有所不同。用于心脏适应症的ECMO启动速度不同于呼吸衰竭所需的速度。确实,很少有心脏病病因需要针对基础疾病进行快速治疗(例如,经皮冠状动脉介入治疗(PCI)的急性冠状动脉综合征(ACS)),因此,可大大减少生存所需的循环辅助治疗时间。因此,必须迅速选择实施ECMO。理想地,ECMO作为血液动力学支持在区域转诊中心或综合护理中心进行,可以将其作为晚期心血管疾病的常规管理方法,例如需要PCI的ACS,长期心脏辅助设备和心脏移植的实施[ 17]。这些ECMO中心必须具有可快速部署的协议,这些协议应迅速发挥作用,这是一个多学科心脏小组,由介入心脏病学家,心脏外科医生,心力衰竭专家和强化专家组成,团队中所有其他成员被认为对适当的管理策略[18-20]。重要的是要强调,ECMO是一种短期辅助设备,可用作循环支持,但对潜在疾病的病因治疗没有影响。应及时管理CA的潜在病因,以最大程度地提高康复机会并加快从ECMO的安全撤药。这可能包括但不限于ACS患者的血运重建(经皮或外科手术)[21,22],难治性心律不齐患者的药物或消融治疗以及瓣膜功能不全患者的外科瓣膜手术[23,24]。对于那些不太可能恢复足够的心室收缩功能或无法安全退出VA-ECMO的患者,应考虑早期评估长期心脏支持治疗[25]。除了先进的心血管平台,支持严重肺血管疾病患者的ECMO中心还应获得治疗肺动脉高压的专家[26]。最后,受益于ECMO心脏辅助的患者处于发生肺部并发症的风险中,需要开始高级呼吸支持,例如静脉-静脉ECMO类型,甚至是静脉-动静脉ECMO。这些技术应提供给提供这些机械支持技术的中心[27]。一个中心实施的ECMO数量越多,住院死亡率越低[28]。这表明大量的ECMO参考中心可能具有更好的生存结果[29-31]。对于没有能力实施ECMO的地方和转诊中心,我们提倡在转诊和/或综合中心周围建立区域网络,从而能够部署ECMO流动团队来启动和运送这些患者[32]。如果在CA的背景下由经验不足的本地中心启动ECPR,则患者可能承担次优结果的巨大风险。对于这些中心,我们提倡与三级医疗或区域转诊中心进行正式合作,这些中心应配备并接受过培训以接受这些患者(具有共同的适应症,禁忌症,插管程序和起始标准)[33]。这些策略已成功应用于呼吸ECMO中心[30,34,35]。ECMO中心的最小案件量仍然是争论的话题。在一项研究中,每年处理30例以上ECMO患者的成人中心的存活率明显高于每年处理6例以下ECMO患者的成人(调整后的OR:0.61,95%CI 0.46-0.80。在心力衰竭的背景下实施ECMO[32],但是,目前的证据是基于来自专业水平未指定的中心的回顾性数据。在ECPR中使用ECMO有其自身的挑战。与严重的心源性休克相反,它通常发生在特定的环境(导管实验室,ICU或手术室)中,CA是不可预测的,并且可能发生在医院内的任何地方,包括急诊室,ECPR计划越来越多发展。 ECPR也可以在院前环境中实施。目前,这种新方法正在研究中(NCT03700125,NCT04620070,NCT02527031)[10,13,36]。强烈建议将ECPR计划与经验丰富的医院重症监护病房相联系,这些病房在管理ECMO患者方面经验丰富,并在可能的情况下尽快将患者转移到转诊中心以保证适当的治疗[37]。4. 设置ECPR的设备和技术在CA期间放置ECMO很复杂,需要特定的专业知识。表1列出了实施ECPR所需的设备和安装。ECMO的插管可以通过超声引导下的血管穿刺术和根据标准Seldinger技术的顺序扩张术进行,也可以通过直接的股骨直接入路[ 38]。通过Scarpa三角形切口的外科手术方法是另一种方法。每种技术都有其优点和缺点。本文将不介绍每种技术的细节,但是技术的选择本质上取决于操作员的技能。图1是用于eCPR的外周股股静脉-动静脉ECMO的示意图。表1.实施ECPR(体外心肺复苏)的设备和安装。但是,在一家大学医院进行的ECMO植入手术数量众多的回顾性研究中表明,在814例植入患者(485例外科手术和329例经皮手术)中,经皮途径与局部感染相关性较低(16.5%比27.8) %,p = 0.001),可比的肢体缺血(8.6%vs. 12.4%,p = 0.347),类似的神经系统并发症(2.6%vs. 2.3%,p = 0.779)和更好的30天生存率(63.8%vs 56.3%,p = 0.034)。然而,经皮插管(相对于手术方法)与更多的无瓣膜后血管并发症相关(14.7%vs. 3.4%,p <0.001),主要是需要手术止血的局部出血(9.4%vs.1.5%,p<0.001)。 0.001)[8]。无论使用哪种插管技术,都必须执行超声心动图检查,以确保在安装ECMO之前正确放置了导板和插管[39]。插管的大小是ECPR有效性的关键决定因素。静脉插管直径的适当选择允许对病人的血液引流优化。正确的动脉套管直径可确保向患者令人满意的血液注入[38]。对于成人,建议引流套管最低为23至25 Fr,再注入套管最低为17至19Fr。尽管缺乏关于维持良好器官灌注所需的理想ECMO流量的证据[38]。动脉插管可以完全阻塞股动脉,并引起插管下肢缺血。为了防止这种并发症的发生,提倡将再灌注套管系统地放置在同侧浅表股动脉中。该再灌注套管连接到动脉回路,因此允许对下肢的套管末端进行充分的灌注。这种再灌注策略的放置可以在距初始插管一定距离的位置进行,因此建议尽早放置。该再灌注导管可通过手术或经皮插入超声引导[40]。然后,ICU护士应每小时对脚部灌注进行多普勒监测。 图1.用于ECPR的周围股骨-股静脉-动脉ECMO。 5. 患者选择过程直到最近,难治性CA一直被定义为对30分钟的常规心肺复苏(CPR)无反应的CA [41]。在平均30到40分钟的不成功的CPR之后,通常选择从常规CPR转到ECPR的时间较晚。因此,生存率变化很大。令人信服的证据表明,常规CPR的长度是难治性OHCA的独立预后参数。传统的心肺复苏术时间越长,结果越差,这一时期的CA被称为低流量[7]。最佳情况下,应在CA开始后60分钟内启动ECPR,以使低流量时间保持在60分钟以下[4]。 Kim等。提示从常规心肺复苏转换为ECPR的最佳时间为21分钟[42]。雷诺兹等。有研究表明,心肺复苏16分钟后,具有良好神经学预后的生存率会降低[43]。因此,对于在常规复苏的前10分钟内没有反应的合格患者,应预见ECPR并立即提供。此外,ECPR应该在CA的20分钟内启动,以便ECMO可以尽快为患者提供帮助。但是,就生存率而言,最重要的决定因素是无流量的持续时间,在此期间患者没有接受复苏[44]。当前的建议指出,早期高质量的心脏按压会影响所有其他手术的有效性[45]。因此,至关重要的是,塌陷后应立即开始CPR,以最大程度地减少无流量时间。即使ECPR的年龄上限有所不同,大多数研究仍排除了70至75岁的患者[5,46-48]。心律失常与OHCA患者的死亡率降低相关[49]。初始心率还可以预示更短的无流量持续时间。在最近的研究中,Tanguay-Rioux等人。研究表明,对于2532年的OHCA,令人震惊的初始节律的总体生存率为13.8%至34%。随着无流量持续时间的增加,维持令人震惊的初始节律的可能性降低(调整后的OR:每分钟0.88,95%CI0.85–0.91)。最初有令人震惊的节律的患者中,有94%(95%CI92–96%)的空流量少于10分钟。作者得出的结论是,每过一分钟无流量,出现令人震惊的初始节律的机会就会减少,从而强调了尽早进入除颤的重要性以及及早筛查可能的ECPR候选人的必要性[50]。另一方面,> 90分钟的低流量患者则不太可能受益于ECPR [4]。确实,最新建议建议ECPR应该在CA的前60分钟内开始[45]。 Otani等在最近的一项回顾性研究中对135例难治性CA患者实施了ECPR。研究了预测神经功能预后良好的预后因素。在包括的患者中,有22名(16%)的神经系统预后令人满意。在“令人满意的神经系统进化”组中,低血流时间较短,阈值为58分钟[51]。在低流量期间,CPR的高质量至关重要。[52]为确保这一点,建议监测过期的二氧化碳(EtCO2),这是CA中生存率的有效指标。 EtCO2 <10mmHg似乎与较低的存活率有关。心肺复苏术期间的通气可能导致峰值吸气压力增加,而高吸气压力可能成为肺损伤的来源。后者使提供所需的潮气量以实现足够的通风具有挑战性。机械压缩装置的使用进一步加剧了医疗提供者面临的困难。但是,当前的国际指南均未提供有关在 机械心肺复苏过程中使用的“最佳”机械通气策略的建议。最近对38篇论文的文献进行了回顾,探讨了机械心肺复苏期间的各种通气策略,结果表明,在心肺复苏期间必须确保高FiO2含量,而证据等级较低的证据是,关闭吸气触发并使用PEEP 5 cm H2O有利。在评论中,作者还提出了一种有趣的操作算法,可能值得将来讨论,并且可能具有前瞻性试验[53]。总之,在发生CA的情况下,正确选择可以从ECPR中受益的患者至关重要。选择没有已知主要合并症,持续性令人震惊的心率,尽可能短的无血流时间并在复苏过程中快速实施目标EtCO2> 10 mmHg的高质量CPR似乎是合理的。最近,还提出了独立于心律的“生命体征”(自发运动,呼吸,喘气和瞳孔反射),作为受益于ECPR的患者生存的良好预测指标[9]。最后,在意外体温过低的情况下,难治性CA的特定病例必须通过ECPR可以发挥其作用的特定方案进行特定管理[54,55]。ECPR仅应用于心脏骤停的高度精选患者。此外,适应症和禁忌症可能因医院,心脏骤停小组的经验水平以及ECLS部署的准备程度而异。迄今为止,还没有ECPR的RCT,也没有针对ECPR适应症或患者选择的前瞻性验证标准。然而,当在多种情况下用于心脏骤停时,ECPR有望获得良好的结果(表2)[45,56]。 表2.对于院外心脏骤停启动院内ECPR的有利和不利标准。6. ECPR后的患者管理ECPR后的管理重点是保持足够的器官灌注,恢复具有天然心输出量的搏动性心律。建立足够的体外循环后,可以停止胸部按压。在这一点上,在改善了冠状动脉灌注压力并从体外泵提供了更好的氧气后,可电击性节律的除颤通常更为有效。引入体外循环后,应对高氧血症具有挑战性。为了不对神经和心血管结果产生负面影响,必须对氧气供应进行充分的校准。平均动脉血压(MAP)应保持在65至75 mmHg(专家建议)之间,并在静脉套管内的流量与负压之间保持谨慎的平衡。大多数情况下,使用升压药(去甲肾上腺素)达到目标MAP。侵入性血压监测是强制性的。建议对右radial动脉进行导管插入术,以便在左心功能恢复的情况下预见Harlequin综合征的发生,并允许检测肺源性低氧血症。有时可能需要进行积极的容量复苏(缺血再灌注综合征),以确保有足够的预负荷来支持ECPR。外周静脉动脉ECMO(VA-ECMO)的循环支持是基于通过逆行动脉血流进行的器官灌注[57]。该策略的重要局限性是左心室后负荷的增加[58]。在心源性休克的情况下,难治性CA后常出现这种情况,左心室后负荷的增加会导致心肌缺血的增加,心律失常,肺水肿和血栓形成事件的发生率增加[59-62] 。严重的主动脉瓣反流应作为VA-ECMO的禁忌证,因为左心室超负荷的风险过高。此外,对于轻度至中度的主动脉瓣反流,心室扩张的风险不可忽略[63]。可以将几种干预措施与ECMO结合使用,以减轻左心室(LV)的负荷,从而避免一些与LV后负荷增加相关的并发症[57,61]。然而,在VA-ECMO期间降低左心室后负荷的最佳方法仍然未知。可以像小剂量多巴酚丁胺一样使用正性肌力药物,以确保主动脉瓣打开并最小化左心室输出[64]。后者可通过打开主动脉瓣来优化左心室收缩力,并防止发生急性充血性肺水肿。建议最小脉冲压力至少为10 mmHg。在某些中心,主动脉内球囊泵被认为是护理的标准,而在其他评估中,LV卸载的评估决定了其使用[65]。最后,某些研究小组表明,通过连续轴向流泵(例如Impella®型)卸载LV可以提高VA-ECMO患者的生存率[66]。最近对近4000名患者进行了荟萃分析,其中42%的患者接受了伴随VA-ECMO的左心室卸载设备(主动脉内气囊91.7%,经皮心室辅助设备5.5%,肺静脉插管或左心房间隔2.8%),受益于静脉无负荷装置的患者的死亡率低于未受益于这种装置的患者。 (54%比65%,相对风险:0.79; 95%置信区间:0.72至0.87;p<0.001)。然而,左心室卸载设备的溶血率较高[67]。一旦为患者提供了VA-ECMO的帮助并使其稳定下来,就应该开始对可疑的CA原因进行治疗。如果怀疑是急性冠状动脉综合症,则必须转诊患者进行PCI即时冠状动脉造影。在这组特定的患者中,研究表明冠状动脉病变多发于近端[68,69]。而且,已经表明CA和PCI之间的延迟与生存有关[70]。如果肺栓塞是CA的起源,则应考虑注射肺部CT扫描以确认诊断[71]。超声心动图也可以提供有用的诊断线索[72]。一些研究小组还建议ECMO支持进行原位溶栓或外科血栓切除术[73,74]。其他人则认为ECMO的作用完全归因于患者固有的纤维蛋白溶解,因此,仅应采用肝素治疗来治疗患者[75-77]。最后,颅内出血(ICH)是接受ECMO治疗的成年人的常见并发症,并伴有死亡率增加。在ECMO中治疗ICH代表了促凝和抗凝需求之间的平衡。神经外科治疗与严重的发病率有关,但在某些情况下已经成功[78]。如果怀疑患有ICH,则在随后进行的任何干预措施或ECMO插入术中,必须优先进行脑部CT扫描。查看心脏骤停中的ECMO:文学叙事回顾(结论)点击:查看更多医学文章 使用英文翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-02-02 19:50:54
评估情感体验时,儿童优先考虑听到的内容而不是看到的内容
医学快报Ingrid FadelliRoss博士及其同事在研究中使用了BEAST全身表达数据集的图像。表达恐惧的人。图片来源:de Gelder和Jan Van der Stock(frontiersin.org/articles/10.3389/fpsyg.2011.00181/full)。Colavita视觉优势效应是一种心理观察结果,以1974年首次收集其存在证据的心理学家Francis B. Colavita的名字命名。Colavita观察到,当成年人出现视觉刺激和其他感觉刺激(例如触觉或听觉)时,同时,它们对视觉刺激的反应更大,并且常常不能完全对其他感觉刺激做出反应。Colavita收集的发现表明,对于大多数没有视力障碍的人来说,视觉是最主要的感觉。尽管一些研究表明,在某些情况下(例如,当他们面临潜在威胁时),一些动物和人类会变得更加依赖听觉刺激,但在非威胁性和“情感中性”的情况下,可乐维他效应的发生是现在有据可查。最近,一些心理学家发现,尽管成年人倾向于对视觉刺激做出更多反应,但可乐维达效应可能不适用于儿童。与成年人相反,实际上,儿童在体验周围世界时似乎更依赖听觉刺激。英国达勒姆大学的研究人员最近进行了一项研究,以研究这种作用在不同年龄的儿童中的作用,即反向Colavita效应。他们的论文发表在爱思唯尔的《实验性儿童心理学杂志》上,报告了有趣的新发现,表明当他们试图把握自己经历中的情感方面时,儿童往往更关注听觉刺激而不是视觉刺激。 Ross博士及其同事在研究中使用了BEAST全身表达数据集的图像。一个表达天使的人。图片来源:de Gelder和Jan Van der Stock(frontiersin.org/articles/10.3389/fpsyg.2011.00181/full)。研究人员之一帕迪·罗斯(Paddy Ross)博士说:“在70年代,科学家发现当同时出现灯光和听觉声调时,成年人表现出视觉优势,并报告了视觉闪光,这就是现在所说的Colavita效应。”进行这项研究的人告诉Medical Xpress。“在儿童中,情况恰恰相反-他们表现出听觉上的优势并报告了音调(被称为反向Colavita效应)。这适用于一些更复杂的语义刺激(动物,噪音等的图片),但我们想知道如果在使用情感信息时仍然可以使用。”在他们的实验中,Ross博士和他的同事使用了其他研究人员编写的两个数据集,并广泛用于心理学研究中:情绪身体刺激(BEAST)数据集和情绪非言语发声(MAV)数据集。他们招募了139名参与者,并根据年龄将他们分为三类:一组年龄在7岁以下的儿童,一组年龄较大的儿童(8至11岁)和一组成年人(18岁或以上)。研究人员为所有参与者提供了成对的音频记录和身体姿势图像,传达了四种主要情感(即欢乐,悲伤,愤怒和恐惧),并要求他们描述他们从刺激中感知到了什么情感。在某些情况下,会同时显示与图像中呈现的情绪相匹配的录音。但是,在其他情况下,这两个刺激是不一致的(例如,一个快乐的人的形象与悲伤的非语言发声的记录成对出现)。Ross博士及其同事在研究中使用了BEAST全身表达数据集的图像。表达妇女的喜悦。图片来源:de Gelder和Jan Van der Stock(frontiersin.org/articles/10.3389/fpsyg.2011.00181/full)。当一对刺激不一致时,参与者被要求要么忽略图像,要么根据录音做出回应,反之亦然。此外,为所有参与者提供了完全相同的一对刺激,以提高实验的有效性并防止单个刺激影响结果。罗斯博士解释说:“我们发现所有年龄段(8、8-11、18岁以下)的人都可以轻易忽略图像,而专注于声音。” “但是,孩子们发现忽略声音是非常具有挑战性的。他们几次低于机率地表演,所以他们不仅仅是在猜测;声音的情感正在影响他们对情感身体姿势的感知。”Ross博士和他的同事是第一个在情感表达的背景下报告儿童听觉优势的证据。他们的发现可能很快会激发新的研究,进一步研究这种影响的程度(即,多大的听觉刺激会影响孩子对周围环境的理解)。Ross博士及其同事在研究中使用了BEAST全身表达数据集的图像。表示悲伤的女人。图片来源:de Gelder和Jan Van der Stock(frontiersin.org/articles/10.3389/fpsyg.2011.00181/full)。罗斯博士说:“我们的研究有几个重要的意义,因为它表明当父母与孩子交流并试图用微笑掩饰愤怒或沮丧时,这可能并不重要。” “换句话说,例如,当一个人悲伤时,'戴上幸福的脸'就不可能说服孩子,除非你的声音听起来也很幸福。”罗斯博士认为,这些新发现也可能对教学和教育产生影响。实际上,由于COVID-19大流行,许多儿童目前正在家里学习,他们可能更容易受到听觉干扰。该研究报告的观察结果暗示了儿童家庭中与情感有关的刺激(例如,有关电视上的COVID-19的节目,家庭成员吵架等)可能会影响儿童如何参与或感知其学业的可能性。罗斯博士补充说:“我们已经进行了一些研究,以观察我们可以将观察到的效应推向多远。” “例如,我们将添加情感面孔,并使用情感音乐而不是发声来进行另一版实验。在这种情况下,任何情感刺激都可能足以影响孩子的视觉感知,甚至可能不需要是人类。” 点击:查看更多医学文章 查看更多生物学文章 使用全文翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-01 19:25:42
咖啡及其成分对胃肠道和脑肠轴的影响(结论)
3.5.美拉德反应产物:黑色素和丙烯酰胺我们小组进行的另一项胃肠运动的影像学研究评估了先前提到的咖啡银皮水提物中黑色素的作用[178]。咖啡银皮是咖啡豆外层的皮料,约占咖啡樱桃的4.2%(w / w),是咖啡烘焙过程中产生的唯一副产品[179]。咖啡银皮已被提议作为益生元,抗氧化剂和膳食纤维的可持续天然来源[180]。咖啡银皮提取物的抗氧化特性是由于CGA的存在[181],也归因于黑色素在烘烤过程中产生的[182]。黑色素是在美拉德反应的最后阶段产生的高分子量棕色聚合化合物[183],而衍生自咖啡的那些被称为“美拉德化膳食纤维” [184]。因此,在健康的雄性Wistar大鼠中,以1 g/ kg的饮用水剂量在体内研究了纤维效应。 4周后,大鼠通过管饲法接受硫酸钡,然后在0-8小时后拍摄X光片。另外,进行结肠珠排出试验以具体确定对结肠推进的可能影响。与先前关于SCG的研究一致,黑色素加速了小肠的转运(因为暴露于黑色素的大鼠中盲肠的到达速度明显快于对照动物),并且倾向于加速粪便颗粒的形成,尽管这种作用并不明显。有趣的是,来自黑色素组的粪便颗粒倾向于稍大,这可能是由于该组中较高的纤维摄入量所致,从而使粪便颗粒在机械刺激结肠方面稍微更有效。此外,黑色素没有显着改变插入结直肠3 cm的珠子的排出潜伏期,表明在此水平上参与结肠推进的运动因子(内在和外在神经支配,平滑肌和ICC)没有改变。饮食接触咖啡银皮产生的类黑素,它们可能被用作功能性食品成分[178]。有趣的是,Argirova等。 (2010)[185]表明,黑素能作用于肌张力,并可能促进Ca2 +流入分离的胃肌层细胞。因此,这些化合物不仅可以通过纤维作用,而且可以通过胃肠道平滑肌细胞的直接活化来发挥其促动力作用,这需要使用分离的肠道肌肉组织来证实。如上所述,丙烯酰胺是由于之间的美拉德反应而形成的。加热过程中的氨基酸和糖[186],也发生在咖啡烘焙过程中。尽管很难评估人体中丙烯酰胺的饮食摄入量,但一般人群的估计饮食摄入量为每天0.3-0.8 µg /kg体重[187]。这是由于不仅暴露于咖啡,而且还暴露于可能也含有丙烯酰胺的其他食品(薄片,谷物)和工业产品(与聚合物,胶水和纸张有关的那些,水处理和化妆品工业[126])。相关浓度会影响人类健康。尽管消化道是丙烯酰胺吸收的主要途径之一,而且包括咖啡在内的含丙烯酰胺食物的摄入量仍在增长,但几乎没有评估其对ENS神经元的作用,但这很重要因为丙烯酰胺是周围神经系统的毒素。在肠道肌层神经元,平滑肌细胞和神经胶质细胞的共培养模型中研究了丙烯酰胺的影响[188]。在这项研究中,将丙烯酰胺以0.01 mM至12 mM的剂量添加到共培养物中,然后孵育24、96或144 h。与肉毒杆菌毒素A(也在同一系统中进行测试并且仅改变神经元功能)相反,当以0.5–2mM的剂量使用时,丙烯酰胺会破坏肠道神经元结构。在这些剂量下,损伤对轴突结构是选择性的,而不影响存活,而在较高剂量下,神经元的存活显着降低。轴突丢失伴有乙酰胆碱释放减少,这在4 mM时可忽略不计。该机制涉及突触囊泡的合成和功能,但不涉及胆碱的摄取。高剂量的神经元损失主要涉及坏死机制,尽管也证实了非胱天蛋白酶3介导的凋亡死亡的频率较低。有趣的是,还显示出在低剂量丙烯酰胺攻击后,轴突再生是可能的。实际上,在低剂量攻击后的24-96小时内,轴突的生长比对照培养的细胞更快,这表明在最初的破坏性侵害之后,补偿机制的参与。但是,发现神经递质的释放至少要延迟几天才能到达轴突再生长。有趣的是,所描述的所有变化都对神经元具有选择性(与潜在的表型无关),肠神经胶质细胞显然未受到影响[188]。口服给实验动物后,丙烯酰胺也被证明对ENS产生神经毒性作用。早期研究显示ENS的变化,丙烯酰胺治疗的大鼠类似于链脲佐菌素诱导的糖尿病动物,但儿茶酚胺能含量发生改变,降钙素基因相关肽(CGRP)的量减少,血管活性肠肽(VIP)水平相应增加[189]。但是,这些研究并未评估这些变化是否与神经元丢失,轴突变性或功能改变有关。最近,已经在猪模型中研究了丙烯酰胺给药的作用。结果表明,即使低剂量的丙烯酰胺也会影响胃肠道的结构和功能,并引起ENS神经元的显着反应。例如,可卡因和苯丙胺调节的转录本(CART)的表达在应激刺激和神经保护的神经元反应中起着至关重要的作用,特别是在接受低剂量的未成熟母猪的小肠肌层丛中或通过口服途径高剂量的丙烯酰胺治疗28天,这被解释为是对这种病理刺激作出响应的胃肠道神经元保护/恢复过程的一部分[190]。甘丙肽是另一种具有神经保护作用的肽,可调节神经损伤后的存活或再生并发挥抗炎活性[191,192]。因此,在相同的猪模型中,即使在低剂量下,胃中粘膜下层和肌间神经丛的甘丙肽样免疫反应神经元的数量也会增加。此外,对甘丙肽具有免疫反应性的同时对VIP,nNOS或CART具有免疫反应性的细胞的粘膜下层和肌层神经元细胞也有所增加。作者再次将这些发现解释为甘丙肽的神经营养/神经保护作用(可能与VIP,nNOS和CART协同作用)在丙烯酰胺中毒后胃ENS的恢复过程中[193]。该系列的另一篇论文于2019年发表,在猪十二指肠中发现了相似的结果。与以前一样,通过口服途径以低剂量(0.5 µg / kg)的每日剂量使用丙烯酰胺,或以10倍剂量(5 µg / kg)的口服途径使用丙烯酰胺4周。两种治疗均导致对P物质(SP),CGRP,甘丙肽,nNOS和囊泡乙酰胆碱转运蛋白(VACHT)免疫反应的神经元百分比显着增加,尽管高剂量会引起更强烈的变化。在这种情况下,作者给出的解释是,所有这些变化可能都是补偿性的塑性作用,试图保护神经元免受损害并恢复肠道神经元稳态[194]。值得注意的是,尽管丙烯酰胺会在体内和体外激活小胶质细胞,从而导致促炎性细胞因子的释放,并因此导致神经元损伤[195],但肠神经胶质细胞参与由丙烯酰胺诱导的肠道神经元改变尚无明确报道。除上述研究使用肠肌神经元神经元,平滑肌细胞和神经胶质细胞共培养,并且在最后一种细胞类型中未显示任何丙烯酰胺诱导的改变外,尚未进行评估[188]。4.咖啡和脑肠轴如前所述,咖啡是化合物的天然来源(图4),能够在脑肠轴上发挥关键作用[196]。有趣的是,在Pubmed中将“脑肠轴”和“咖啡”组合为关键字时,仅检索了三篇论文(截至2020年11月29日),其中两篇以咖啡与PD的关系为主导(请参见下文)[ 197,198]。另一个是Papakonstantinou等人最近的一项研究。[199],他对40位健康的年轻人(20-55岁)进行了一项随机,双盲,交叉的临床试验(ClinicalTrials.govID:NCT02253628),以研究200毫升含160毫升咖啡饮料的效果mg咖啡因(冷热速溶咖啡,冷浓缩咖啡,热过滤咖啡)对(1)自我报告的胃肠道症状,(2)唾液胃泌素,(3)压力指数(唾液皮质醇)和α-淀粉酶)和心理测量,以及(4)血压。重要的是,参与者是每天的咖啡消费者,并且该研究是在无压力的情况下进行的条件。咖啡对自我报告的焦虑水平没有影响。此外,参与者在与胃肠道阴性症状(例如,腹部不适,腹胀,消化不良和胃灼热),慢性压力和负面情绪有关的所有问题中均得分很低(十分之1),而得分较高(10分钟有9分)关于积极情绪的所有问题。饮用咖啡后,唾液中的α-淀粉酶活性显着提高,仅在摄入后15分钟和30分钟时冷速溶咖啡和过滤后的咖啡之间存在显着差异。不论咖啡类型如何,唾液胃泌素暂时增加,而唾液皮质醇或自我报告的焦虑水平不受影响。但是,在实验期结束时,血压显着升高(但在健康的生理水平内),与咖啡的类型/温度无关。尽管许多研究已经解决了咖啡和咖啡因对心血管和中枢的影响,但Papakonstantinou等人的报告指出。似乎是唯一一项在相同的个体和相同的条件下专门评估它们对整个脑-肠轴影响的研究。因此,证明了在非压力条件下的急性咖啡摄入与胃肠道症状无关,但激活了交感神经系统,与唾液中的α-淀粉酶和血压升高有关,但与唾液皮质醇无关,这被认为是由于可能是咖啡的抗应激作用[199],可能是咖啡因以外的其他咖啡化合物造成的。因此,重要的是,不仅要研究咖啡,还要研究其成分对脑肠轴的影响。图4.咖啡化合物对脑肠轴的影响。缩写:CGA,绿原酸; GABA,γ-氨基丁酸。 4.1.咖啡因咖啡因是咖啡中发现的主要精神活性化合物(表1)。它是从饮食中摄取并吸收到血液中,刺激交感神经系统活动,并容易穿过血脑屏障(BBB),对中枢神经系统(CNS)也具有刺激作用[196,200]。咖啡因通过调节不同的神经元途径对中枢神经系统有影响。因此,在动物和人体研究中,都发现咖啡因暴露后多巴胺能系统发生了变化[201]。不同的研究表明,咖啡因会增加细胞外多巴胺的浓度[202],以及多巴胺能受体和转运蛋白的表达[203],从而导致认知功能障碍和注意力的改善[204]。此外,据报道,咖啡因能够抵抗多巴胺能神经元的丧失,在动物模型中诱导神经保护并减轻神经系统疾病[205],这在PD的背景下可能特别有用。(见下文)。然而,精神分裂症和成瘾中的多巴胺能活性增加。因此,在这些患者中也必须考虑咖啡和咖啡因的作用。重要的是,由于不同的原因,精神分裂症患者的咖啡和咖啡因摄入量相对较高,包括缓解无聊和冷漠的意愿或抗精神病药物的副作用,如镇静或口干[206]。通常,建议这些患者减少咖啡消耗量[207]。另一方面,据报道咖啡因和谷氨酸能信号传导之间可能存在相互作用。长期摄入咖啡因可减轻成年雄性C57BL / 6小鼠的胚细胞诱导的记忆障碍,这与在损伤的不同阶段对谷氨酸兴奋性毒性,炎症,星形胶质增生和神经元丢失的神经保护作用相关[208]。此外,摄入咖啡因还可以减少海马中谷氨酸能神经末梢的丧失,从而恢复糖尿病引起的小鼠记忆功能障碍[209]。此外,发现咖啡因会降低γ-氨基丁酸(GABA)能量系统的活性并调节GABA受体,从而导致神经行为效果[201]。长期摄入咖啡因可能与GABA的长期减少有关[210]。最后,Jee等人的最新评论。 (2020)指出,咖啡因的摄入对男性和女性都有不同的神经和精神病学影响[211],突出了评估性别对咖啡及其成分对脑肠轴影响的影响的重要性。特别是,作者表明,摄入咖啡因可降低女性中风,痴呆和抑郁症以及男性PD的风险。然而,咖啡因对男性和女性青少年都有增加睡眠障碍和焦虑增加有负面影响[211]。4.2.多酚类咖啡也是CGA(表1)的来源,CGA是一种羟基肉桂酸,具有抗氧化、抗菌和抗炎等促进健康的作用[212]。大多数摄入的CGA被水解为CA和奎宁酸,并被肠道微生物群进一步代谢为各种芳香酸代谢物[213]。关于CGA及其代谢物穿越血脑屏障的能力存在争议[214215]。然而,由于其抗氧化和抗炎特性而产生的神经保护作用之前已经被描述过[215]。正如咖啡因所提到的,CA和CGA是具有抗氧化特性和对多巴胺能神经毒性具有神经保护作用的咖啡成分[216,217],已被认为是降低与咖啡消费有关的PD风险的基础[218,219]。有趣的是,PD的主要症状之一是便秘,似乎在PD运动症状出现前10-20年已经出现[220],较低的排便频率预示着未来的PD危机[221]。此外,PD患者和动物模型中会发生神经变性,有力的证据表明PD可从ENS开始并通过迷走神经从那里扩散到CNS [222,223]。在最近的报告中,在鱼藤酮诱导的PD小鼠模型中测试了CA或CGA [224]。在该模型中,将小鼠皮下植入一个渗透微型泵,以2.5mg/kg /天的剂量给予鱼藤酮(相当于通过农药暴露于鱼藤酮的环境水平),持续4周。从鱼藤酮暴露前的第一个星期开始,直至暴露结束,每周5天施用CA(30mg/ kg/天)或CGA(50 g/ kg /天)。处死后评估治疗对中枢多巴胺能和肠神经元的作用,并在鱼藤酮治疗结束后1天进行治疗。此外,将大鼠肠神经元和胶质细胞的培养物暴露于鱼藤酮(1-5nM)或不暴露于CA(10或25 µM)或CGA(25 µM)。值得注意的是,除了对与PD相关的中心结构和细胞(即,黑色素多巴胺能神经元)产生有益影响外,和星形胶质细胞),这证明了CA或CGA的施用至少部分地阻止了鱼藤酮诱导的变化,鱼藤酮既影响了治疗小鼠肠肌层神经丛的神经元,也影响了肠神经胶质细胞。重要的是,所有这些作用均在体外复制。确切的机制尚不清楚,但有人建议CA和CGA预处理或CGA预处理可以增强神经胶质细胞的活性,从而响应鱼藤酮的暴露而产生抗氧化分子。尽管所使用的CA和CGA剂量可能比喝咖啡的人每天摄入的CA和CGA剂量高2-5倍,但结果显然令人鼓舞。实际上,作者建议,尽管CA和CGA对胃肠蠕动的影响,也许有可能使用一种以食物为基础的有前途的神经保护治疗策略来改善PD的运动症状和非运动症状,例如便秘。在本报告中未作具体评估[224]。在编写此手稿的最后阶段,Rogulja小组发表了一份报告[225],该报告显示,睡眠的有益效果与肠道健康之间有着关键的联系。他们证明严重的睡眠不足会导致果蝇和小鼠的肠道(而非大脑)中的ROS积累,这与果蝇的死亡有关(睡眠受限的短暂周期无法证明这一点)也在老鼠中)。重要的是,可以通过口服抗氧化剂化合物或通过抗氧化剂酶的肠道靶向转基因表达来预防所有这些作用。许多人使用含咖啡因的咖啡来保持清醒,尽管咖啡因可能有助于失眠[211],但咖啡的抗氧化剂成分(如褪黑素,这是Rogulja和合作者在上述研究中使用的抗氧化剂之一,[225])可能会阻止积聚。避免肠道中的ROS,避免自愿睡眠限制的有害作用。4.3.氨基酸及其衍生激素天然存在于咖啡中的化合物之一是色氨酸(Trp),它是饮食中必须提供的必需氨基酸。色氨酸通过钠依赖性中性氨基酸转运蛋白,钠依赖性中性氨基酸转运蛋白(B0AT-1)吸收,需要通过与血管紧张素转化酶2(ACE2)的相互作用来稳定色氨酸[226]。色氨酸的吸收导致分泌α-防御素,富含半胱氨酸的阳离子肽,对多种细菌和其他微生物具有抗生素活性,从而使饮食中的Trp成为肠道菌群稳态所必需的[227,228]。重要的是,Trp的异常吸收(可能是由于慢性应激期间ACE2的细胞表面下调所致[229]或被严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2)[230]感染)导致的表现结肠炎,例如腹泻[231]。这种氨基酸对于维生素B3(烟酸)的合成也是必不可少的,这种维生素的缺乏会导致糙皮病,这种疾病的特征在于腹泻,炎症和蛋白质营养不良,并伴有皮肤和中枢神经系统表现[232]。重要的是,最近的研究还表明,烟酸缺乏症可能与阿尔茨海默氏症,帕金森氏症和亨廷顿氏症有关;认知障碍;或精神分裂症[232]。一旦Trp被消化道吸收并从肠道吸收,它就可以在循环中使用(大部分结合白蛋白)并穿过BBB参与CNS中的5-羟色胺合成[233,234]。血清素是一种神经递质,可调节不同的生理方面,例如行为,学习,食欲和葡萄糖稳态[235]。全身5-羟色胺的百分之五是脑源性的[235],而大多数5-羟色胺(95%)是由胃肠道ECs中的Trp产生的[233]。 EC在胃肠道粘膜中充当感觉转导成分。进食,腔内扩张或传入迷走神经刺激后,EC释放5-羟色胺,其主要靶点是包括迷走神经在内的初级传入神经元的粘膜投射[236]。膳食和外周血清素不能穿过血脑屏障,这意味着与脑源性血清素相比,外周血清素具有不同的功能[235]。外周血清素通过作用于胰腺参与葡萄糖和脂质稳态的调节肝细胞和白色脂肪细胞上的β细胞[235]。血清素也参与内脏疼痛,分泌物的分泌和蠕动反射的调节,并改变在许多不同的精神疾病中也可以检测到这种激素的水平。某些胃肠功能紊乱的症状可能是由于中枢神经系统活性失调,外周水平(肠)失调或通过神经内分泌免疫刺激而两者结合(脑肠轴)引起的。另外,一些研究表明血清素在肝脏中的促纤维化作用,表明它与血小板衍生的生长因子协同作用可刺激肝星状细胞增殖[237]。从大脑中Trp合成的另一种神经递质是褪黑激素[238]。褪黑素在昼夜节律的控制中起着至关重要的作用,它还是一种强大的自由基清除剂和抗氧化剂[239]。咖啡是褪黑激素的来源,但该化合物在人体中的生物利用度较低(约3%)[240],咖啡因可降低内源性夜间褪黑激素水平[238],对睡眠时间和睡眠质量有重要影响[211]。 ]。GABA是CNS的主要抑制性神经递质,通常在许多大脑区域中以高浓度存在。在绿色咖啡豆中也可以找到它(表1)。尽管尚不清楚GABA穿过BBB的能力[241],但其止痛,抗焦虑和降压特性可能是由于对胃肠道受体,循环GABA或一定量的GABA可能通过胃肠道的局部作用所致。 BBB [196,242]。4.4.美拉德反应产物:黑色素膳食纤维和黑色素(后者也称为美拉德化膳食纤维[184])同样存在于咖啡中(表1),并在肠道甚至大脑中具有促进健康的特性。膳食中的黑色素与纤维相似,可以逃避胃肠道的消化,到达结肠,并成为肠道菌群的底物[243]。在肠道中,膳食纤维会增加粪便体积,有助于正常的肠功能和加速肠道运输[244]。不可消化的碳水化合物被微生物群发酵成SCFA,这些代谢物被归因于几种健康影响[196]。奇怪的是,对雄性Tsumura Suzuki肥胖糖尿病(TSOD)小鼠(一种代谢综合征的公认小鼠模型)进行的研究表明,咖啡因和CGA在每天服用这些化合物16周后,改善了血浆SCFA的分布。但是,在这项研究中,咖啡没有任何作用,可能是因为咖啡成分中的膳食纤维含量因品牌而异[245]。SCFA影响胃肠道上皮细胞的完整性,葡萄糖稳态,脂质代谢,食欲调节和免疫功能,并能够穿过血脑屏障[246]。有趣的是,人类研究报告称,膳食纤维可以从SCGs中分离出来,并具有生时作用[247],除了可以促进短期食欲和减少能量消耗[248]。此外,最近对14位健康受试者进行的一项随机交叉研究报告说,早餐时食用的咖啡类黑素减少了每日的能量摄入并调节餐后血糖和其他生物标志物[249]。5.结论咖啡是许多化合物的复杂可变混合物,其作用可能根据其来源,加工,生物利用度以及可能的协同和/或拮抗作用而变化。流行病学研究表明,咖啡冲泡可能对消化道产生多种影响,包括对粘膜的抗氧化剂,抗炎和抗增殖作用以及对肌肉层的促运动作用。但是,与其他人体系统和功能(即心血管系统,CNS)已知的形成鲜明对比的是,迄今为止积累的有关咖啡和特定咖啡衍生化合物对胃肠道整体或胃肠道影响的知识尽管胃肠道是第一个与摄入咖啡接触的身体系统,但事实上,整个器官中的不同器官以及对整个肠道壁中不同细胞类型所发挥的特定作用机制都非常缺乏。 。此外,咖啡及其衍生物对脑-肠轴健康(从情绪到神经变性)的影响直到最近才得到解决。咖啡被公认为是全球最受欢迎的饮料之一,也是交易量最大的产品,每天有数百万人消费咖啡[250]。此外,咖啡厂Coffee sp.。提供的功能远远超过传统饮料,其副产品,包括咖啡花,树叶,果肉,果壳,羊皮纸,生咖啡,银皮和SCG,已成为新功能食品的诱人潜在原料来源[251] 。希望,目前对咖啡和咖啡副产品的浓厚兴趣将有助于获得有力的科学证据,以阐明其在胃肠道中促进健康的特性的作用和作用机理。此外,有针对性的功能性食品可能很快就会开发出来,以专门保护或改善胃肠道和脑肠轴的健康。 作者贡献:概念化,R.A .;写作-原始草稿,A.I.-D.,J.A.U.,M.D.d.C.,R.A .;写作-审查和编辑,R.A。和M.D.d.C .;资金获取,R.A。和M.D.d.C.所有作者均已阅读并同意该手稿的发行版本。资金:项目“咖啡行业可持续发展的新知识”由法国国家调查委员会(CSIC)资助(201970E117); “针对结肠直肠癌患者的风险状况和全球福祉的新成分和有益食品的生产(TERATROPH,IDI-20190960)”和“新型咖啡副产品饮料,可实现脑肠轴的最佳健康( COFFEE4BGA)”由科学和创新部(PID2019-111510RB-I00)资助。机构审查委员会声明不适用。知情同意声明不适用。数据可用性声明数据共享不适用。致谢感谢YolandaLópez-Tofiño和Gema Vera在记录X射线图像和整个图像时所提供的技术帮助。利益冲突作者宣称没有利益冲突。缩略语[Ca 2+ ] i细胞内游离Ca 2+5-CQA5-O-咖啡酰奎尼酸ACF异常隐窝灶ACE2血管紧张素转换酶2层次分析法超极化后AKTAP丝氨酸/苏氨酸激酶Akt动作电位资料库蛋白激酶BATF-2激活转录因子2ATF-3激活转录因子3B 0 AT-1BBB钠依赖性中性氨基酸转运蛋白血脑屏障是巴雷特食管认证机构咖啡酸钙2+cAMP环磷酸腺苷单磷酸钙大车可卡因和苯丙胺调节的转录本注册会计师绿原酸CGRP降钙素基因相关肽国际会议钙诱导的钙释放中枢神经系统中枢神经系统COX-2环氧合酶2品质保证咖啡酰奎尼酸CRC大肠癌C反应蛋白C反应蛋白工商管理硕士二甲基苯并蒽DSS葡聚糖硫酸钠欧共体肠嗜铬细胞EGFENS表皮生长因子肠神经系统ERKf-EPSP细胞外信号调节激酶,快速兴奋,突触后电位加巴γ-氨基丁酸格尔德胃食管反流病GSK3βGST糖原合酶激酶3β谷胱甘肽S-转移酶他苏木精/曙红HIF-1缺氧诱导因子1HO-1血红素加氧酶-1HSP 70IARC热休克蛋白70国际癌症研究机构IBD炎症性肠病国际刑事法院卡哈尔间质细胞IKKIkB激酶白介素白介素iNOS诱导型一氧化氮合酶JNKMAPKMcl-1MCP-1c-Jun N-末端激酶促分裂原活化蛋白激酶髓样细胞白血病1甲基接受趋化蛋白-1SAPK应激激活蛋白激酶梅克·明格MAPK / ERK激酶N-甲基-N-硝基-N-亚硝基胍MP肠神经丛ND没有检测到核因子-kβ核因子-kβ氮氧化物一氧化氮合酶没有一氧化氮NR没有报告PAI-1纤溶酶原激活物抑制剂1局部放电帕金森氏病PTENPG磷酸酶和张力蛋白同源前列腺素PhIP2-氨基-1-甲基-6-苯基咪唑并[4,5- b ]吡啶ROS活性氧RP静息潜力RyRryanodine受体层次分析法超极化缓慢SARS-CoV-2严重急性呼吸系统综合症冠状病毒2美国足协短链脂肪酸SCG用过的咖啡渣EPS缓慢的兴奋性突触后电位SMP粘膜下丛SPP物质spp。STAT5TNF-R物种信号转导子和转录激活子5肿瘤坏死因子受体坏死因子肿瘤坏死因子TOPK色氨酸淋巴因子激活的杀手t细胞起源的蛋白激酶样蛋白色氨酸UDPUGT1A尿苷二磷酸UDP葡萄糖醛酸转移酶VACHT水泡乙酰胆碱转运蛋白血管内皮生长因子血管内皮生长因子贵宾血管活性肠肽WHO世界卫生组织ZO-1zonulin-1参考文献(可至原文查看)1. 鲁米斯,D。 K.Z. Guyton;格罗斯(Y.劳比-塞克雷坦(B.) El Ghissassi,F。 V. Bouvard;本布拉欣-塔拉(L. N.古哈;马托克,H。 Straif,K.饮用咖啡,伴侣和非常热的饮料的致癌性。柳叶刀·Oncol。 2016,17,877–878。 [CrossRef]2. 格罗索(Grosso)戈多斯,J。 Galvano,F.;Giovannucci,E.L.咖啡,咖啡因和健康结果:《雨伞评论》。年。版本号营养食品2017,37,131–156。 [CrossRef][PubMed]点击:查看咖啡及其成分对胃肠道和脑肠轴的影响(上) 查看更多医学文章 试用免费翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-28 18:38:54
咖啡中的成分对人体胃肠道和脑肠轴的影响(中)
2.2.2.咖啡因对于特定的化合物,例如咖啡因,其浓度(如前所述)根据咖啡品牌和制备方法的不同而有很大变化,这使得很难以人群为基础评估咖啡因的摄入量[41]。咖啡因在胃和小肠中迅速吸收,并已提出通过改变诸如2-氨基-1-甲基-6-苯基咪唑基(4,5-b)吡啶(PhIP)等致癌物的代谢来降低癌症风险。在大鼠中显示。 PhIP是一种胺,人类从熟肉和鱼中强烈暴露于该胺中,因此,它与CRC有关。关于这一点,已经证明咖啡可以增加参与PhIP解毒的酶的表达,例如谷胱甘肽S-转移酶(GST)[111]。结果,咖啡因减少了PhIP引起的结肠畸形隐窝灶(ACF)肿瘤前病变的数量[112]。有趣的是,一项针对人类健康志愿者的研究表明,通过过滤谷胱甘肽浓度,未过滤的咖啡引起了大肠黏膜的解毒能力和抗诱变特性的增加[113]。然而,重要的是要注意,当PhIP的致癌作用与高脂饮食结合时,细胞增殖增加,而咖啡因却无法阻止它,这是解释流行病学研究时要考虑的因素[114]。同样,在由N-甲基-N-硝基-N-亚硝基胍(MNNG)诱导的大鼠CRC模型中,咖啡以不依赖咖啡因的方式减少了发育不良的隐窝的发生,尽管脱咖啡因的咖啡和咖啡因均降低了炎症压力, DNA损伤[115]。相反,先前对MNNG和NaCl诱导的大鼠胃癌发生模型的研究表明,咖啡因治疗可抑制腺体胃粘膜脂质过氧化,从而减少胃肿瘤[116]。咖啡因剂量,给药方式和肿瘤诱导方法的差异可能解释了这些矛盾的结果。2.2.3.多酚类关于多酚,研究回肠造口术的对象,Olthof等。 (2001)[117]确定,大约三分之一的CGA被小肠吸收。其余的多酚到达结肠,由于微生物的作用,其中的多酚通过分解产生更简单的分子,因此,很少有吸收的分子保留咖啡中存在的母体CQA的结构。因此,微生物作用对于酚的吸收是必需的,但是单个微生物组本身也被它们调节[70,72,118]。结果,最终被吸收的CQA衍生物是多种多样的。尚不清楚它们是否能预防或诱导细胞损伤,并且由于对体内CGA作用的研究数量非常有限,因此尚不清楚它们在体内的总体作用[41,73]。无论如何,CA可能与癌症代谢的减少有关。Kang等。 (2011)[84]显示,在CA施用后,通过输注CT-26结肠癌细胞在小鼠中引起的肺转移受到抑制。 CA强烈抑制有丝分裂原激活的MAPK /ERK激酶(MEK1)(一种蛋白激酶,其组成性激活导致细胞转化)和TOPK(一种在CRC中高水平表达的丝氨酸/苏氨酸激酶和ERKs激活剂)的活性。 CA以非竞争性方式直接与MEK1或淋巴因子激活的杀伤性t细胞起源的蛋白激酶样蛋白(TOPK)结合。 2.2.4.二萜在体内测定的第三组生物活性化合物是二萜类咖啡因和卡威醇。这些化合物在大鼠中充当针对PhIP的化学保护剂。在这种情况下,与对照组相比,结肠中PhIP-DNA加合物的形成减少了54%。同样,在二甲基苯并(a)蒽(DMBA)处理后,这些二萜减少了仓鼠颊癌的发生[119]。卡赫威醇和咖啡酚的作用似乎取决于饮食中这些化合物的持续存在,因为它们在去除后是可逆的。这些脱毒作用可能是由甘蔗酚和咖啡甾醇诱导GST和其他代谢酶(例如UGT1A)的能力介导的。通过这种方式,已经表明,摄入二萜会导致大鼠产生GST的2.5倍诱导和UGT1A的剂量依赖性增加[99,120]。在小鼠中,卡夫酚似乎比咖啡甾醇更有效地诱导GST [121]。通过直接防止致癌物-DNA结合而引起的卡哇尔醇和咖啡甾醇的化学保护作用也不应丢弃[99]。这些二萜对人的作用的研究很少,但是据报道血清中总胆固醇的增加[122]。然而,商用咖啡中咖啡酚和卡威醇的浓度变化使人们难以回答以下问题:在食用中等量咖啡而不引起高胆固醇血症的人中,是否可能在动物中观察到有益的作用。尽管考虑到高胆固醇血症和模型动物体内酶诱导所需剂量之间的差异,这个问题仍然悬而未决,但在不增加胆固醇水平的情况下,也有望对人类产生有益作用[99]。2.2.5.美拉德反应产物:黑色素和丙烯酰胺美拉德反应是咖啡烘焙过程中发生的主要化学事件。由于美拉德反应,因此在咖啡烘焙过程中会产生黑色素。如上所述,黑色素具有广泛的有益特性。在葡聚糖硫酸钠(DSS)诱导的IBD小鼠模型中,虽然尚未阐明涉及的确切机制,但已显示出其暴露于黑素素与减轻炎症之间的相关性[123]。研究它们在模型动物中是否可重现其抗氧化剂和金属螯合活性,抗微生物活性,调节结肠菌群的能力以及体外抗高血压活性(见上文),将是有趣的。最后,值得一提的是,黑色素在体内具有膳食纤维的作用,在很大程度上不被人类消化并在肠道中发酵[41,102]。黑色素可能是结肠健康的重要因素,因为它们的摄入量可能达到每日建议膳食纤维摄入量的20%[15]。在下一节中,将重点讨论咖啡及其成分对胃肠动力的影响,对此将进行更深入的讨论。由于在食品加工的此步骤中使用的高温,在咖啡烘焙过程中还会产生丙烯酰胺。吸收后,很大一部分丙烯酰胺在代谢上转化为具有化学反应性和遗传毒性的缩水甘油酰胺。丙烯酰胺是一种非常易溶的致癌物,已被证明会在实验动物的多个器官部位引起肿瘤,但在消化器官中不会引起肿瘤[124]。有趣的是,迄今为止,流行病学研究未能提供证据表明,人体暴露于丙烯酰胺后,大多数类型癌症的风险增加[124,125]。然而,丙烯酰胺对胃肠道上皮不是没有影响,因为一些实验动物(大鼠)的报告显示,口服4周后,胃样品中血管充血,粘膜糜烂,保护性表面粘液耗竭以及广泛的炎症浸润30 mg / kg的丙烯酰胺,由于严重的氧化应激,表现为脂质过氧化和胃组织中抗氧化酶的耗竭显着增加,以及诱导型一氧化氮合酶(iNOS)产生的一氧化氮(NO)产量较高)归纳[126]。3.咖啡和胃肠道:专注于运动功能胃肠蠕动是一个复杂的过程,涉及不同的要素。与运动功能直接相关的元素是平滑肌,在所有胃肠器官中都有两层:圆形(内层和较厚)和纵向层(外和较薄)(它们的名称指的是运动方向)。它们的平滑肌细胞,围绕或沿着胃肠道的纵轴;胃有一个额外的斜肌层。内外肌层之间是肌层神经丛,它是直接影响胃肠运动功能的肠道神经系统部分(ENS,胃肠道的内在神经支配)[127]。在肌层神经丛中,不同的肌层神经元亚群参与不同运动模式的产生,例如蠕动反射,即基本运动模式,由于口腔的收缩和鼻腔的松弛,使得腔内内容物向远侧发展。圆形肌肉,以及纵向肌肉长度的协调变化。肠神经胶质细胞(以前被简单地认为是神经元的支持细胞,但现在被认为具有重要的信号传导功能)也可以协同运动[128]。此外,位于肌肉层和肌间神经丛内不同水平的Cajal间质细胞(ICC)起到起搏器的作用并产生定型的活动模式(即慢波[129])。此外,来自自主神经系统的外在神经支配(属于其副交感神经支的迷走神经和骨盆神经,以及属于交感神经支配的内脏神经),以及肠壁内分泌的激素(来自肠嗜铬细胞(EC),L细胞)等),或通过不同来源的血流到达肠壁外源性内分泌腺,通常被认为是胃肠道运动功能的重要调节剂。最后,免疫细胞(尤其是肥大细胞[127,130])和微生物群可能分别产生和释放介质和代谢物,它们可能会显着改变运动性,或者有助于维持健康的肠道或促进肠道疾病的发展。一般而言,咖啡及其成分对胃肠道运动功能的影响以及所涉及的具体机制几乎没有得到评估。3.1.咖啡冲泡对胃肠动力的影响尽管在世界范围内广泛使用咖啡,但令人惊讶的是,仅很少评估了这种饮料对胃肠运动功能的影响,特别是与其他系统(例如心血管和中枢神经系统)相比时。很快证明咖啡可以降低食道括约肌压力[131],并刺激胃分泌[69]。两种作用都可能导致或加剧胃灼热,这是咖啡中最常见的作用。这可能是由于直接刺激食道粘膜或促进GERD引起的[132],这可能有利于Barrett食道(BE)的发展(见上文)。与等渗对照溶液相比,使用恒压器发现咖啡可以延长近胃的适应性松弛时间,表明它可能会减慢胃排空[132]。但是,其他使用闪烁显像术或应用潜在体层摄影术的研究表明,对部分人的胃部运动功能甚至加速胃排空没有影响[132-135]。这些矛盾的结果可能是由于方法上的差异,包括参与者的选择(健康或消化不良)或用于研究的咖啡饮料的类型[132]。尽管喝咖啡和功能性消化不良有早期关联[136],但后来将其归因于与患者特征相关的研究偏见(较高的肥胖[137],更注意其症状[138])。确实,尽管近端胃具有放松作用,但咖啡并没有改变胃壁的顺应性,壁张力或感觉功能[139]。尚未证实与消化性溃疡疾病有关[132]。含咖啡因的饮料(75-300 mg)被证明可引起小肠剂量相关的分泌[140],尽管咖啡本身对钠和水的运输没有显着影响,可能是由于其他食物的补偿作用所致。咖啡成分[141]。尽管普遍认为咖啡有利于腹泻,但对空肠和回肠液分泌的影响与小肠转运的改变无关[140]。 Orocecal过境研究也没有发现咖啡与对照溶液相比有任何显着效果[135]。但是,这些结果可能是由于使用乳果糖作为评估运输的底物,因为该化合物本身会加速运输,并且可能掩盖了咖啡的可能作用[132,142]。在一项早期研究中,使用射线照相技术显示,喝咖啡和低脂早餐会导致胆囊收缩,与普通和含咖啡因的咖啡相似[143]。多年后,尽管没有使用对照饮料作为对照,但超声检查也证实了常规咖啡的使用[144]。使用更好控制实验设计的进一步研究证实,含咖啡因和脱咖啡因的咖啡会诱导胆囊收缩素释放和胆囊收缩[145],这可以解释为什么有症状胆结石的患者经常避免喝咖啡。关于结肠运动,很快发现,无论咖啡因与否,咖啡都会促进至少三分之一的人口(主要是女性)排便的欲望,这与直肠乙状结肠运动功能的增加有关。此外,人们发现这种增加是在喝咖啡后(无论是否含咖啡因)在4分钟后发生的,而不是在喝热水后发生的。由于(不加糖的)咖啡不含卡路里,并且其对胃肠道的影响不能通过其体积负荷,酸度或重量克分子渗透压浓度来证明,因此很快就认识到它必须具有药理作用[132]。因此,这些发现被解释为由咖啡因以外的咖啡成分间接介导,其通过作用于胃中的上皮受体或小肠会触发胃肠道反应,当时推测是由于胆囊收缩素或其他激素的释放[146]。有趣的是,这些结果得到了非卧床结肠手术的进一步支持[147]。在一项针对12名健康志愿者的研究中,将探针放置在横结肠中段,第二天评估了四种不同饮料的效果:不加糖的黑咖啡,不加糖的无咖啡因咖啡,1000大卡餐和水。含咖啡因的咖啡可显着提高结肠运动能力,包括传播和同时收缩,分别比水和无咖啡因的咖啡分别高60%和23%,与进餐的效果相似。含咖啡因的咖啡和餐食(但不含咖啡因的咖啡)均产生强烈的胃结肠反应,但在这种情况下未检测到性别的明显影响。与水相比,咖啡使传播性收缩增加50%,这表明这种饮料可能会刺激运动,并伴有腹部绞痛,肠胃气胀和排尿的发生,从而证实了人们普遍认为咖啡刺激结肠运动活动。含咖啡因的咖啡的效果类似于前30分钟的进餐效果,尽管持续时间较短(1-1.5小时对2-2.5小时)。不含咖啡因的咖啡似乎也能增强结肠运动活性,但效果不如含咖啡因的咖啡,并且似乎仅在记录的较近的结肠部位才发挥这种作用。不论哪种咖啡,摄入后的短暂反应时间再次被解释为是由于间接机制的介入,可能是小肠介导的神经体液反应,因为咖啡的胃排空发生在15- 20分钟[148]。作者承认,所涉及的特定分子尚不清楚,但提到了不同的可能性,例如胆囊收缩素,外啡肽(咖啡中存在阿片类分子),胃泌素或胃动素,以及咖啡中所含其他活性成分可以添加自己对肠道平滑肌的直接作用。重要的是,作者认为,咖啡所显示的效果可能对诸如慢行便秘等结肠疾病患者有益,但可能对腹泻或大便失禁患者有害[147]。在这方面,Gkegkes等人最近发表了一篇系统综述和荟萃分析,其中他们评估了咖啡预防术后肠梗阻的潜在作用的证据[149]。术后肠梗阻是一个重要的并发症的手术,管理尚未优化。这种临床相关问题的根本原因是多方面的,包括手术操作本身、阿片类镇痛药、炎症、电解质波动以及自主神经功能和胃肠激素系统失衡[150151]。尽管术后肠梗阻通常可以自行解决,但由于延迟出院,术后肠梗阻是一个重要的临床和经济负担,尤其是住院费用[152]。除其他措施外,促动力药物(阿维莫泮、ghrelin激动剂、新斯的明和5-羟色胺受体拮抗剂)、口香糖、胃涂鸦和咖啡也用于治疗。作者关注咖啡,发现四个随机对照试验符合他们的研究条件,其中三个涉及结肠直肠手术[153–155],只有一个涉及妇科手术[150],共341名患者(每个研究的样本量为58–114名患者)。对156例患者术后给予咖啡治疗。最显著的结果是:(1)与对照组相比,咖啡没有显著增加并发症;(2)咖啡显著减少了直到第一次排便的时间,以及对固体食物的耐受时间、第一次胀气和第一次排便的时间;(3)在治疗方面没有发现显著的影响住院时间。不含咖啡因的咖啡被证明可以缩短开始排便的时间[155],这表明咖啡因对咖啡的效果不是必需的,而且有人认为CGAs和类黑素可能有作用[15]。两者都显示出抗氧化作用,而黑色素可能有助于纤维效应咖啡抗肠梗阻的性质(见下文)。此外,作者提出在脱咖啡因过程中可能会形成其他化学活性剂[149]。其他可能有助于咖啡发挥积极作用的机制与咖啡中某些化合物的抗炎作用有关。在这些方面,C-反应蛋白(CRP)水平作为术后第一天,取下鼻胃管后喝咖啡的患者与未喝咖啡的患者相比,术后并发症的指标显着降低。此外,在该研究中,较低的CRP水平与开始排便的时间减少,以及术后并发症的发生率和住院时间的减少有关,特别是在患有右结肠肿瘤的患者中[155]。这项荟萃分析的另一个重要结论是,与阿尔威莫m(一种外周类鸦片拮抗剂)相比,该药也显示出降低与手术相关的阿片类药物使用的便秘影响的良好结果[156,157],咖啡可能是一种较便宜的治疗策略。取得可比的结果[149]。与其他使用咖啡的研究一样,作者强调的局限性包括所用咖啡的质量和数量上的差异,参与者人数少以及患者和手术的异质性。总的来说,可以说到目前为止进行的评估咖啡对人的影响的研究相对较少,参与者的数量相对较少,并且主要是健康的(除了与术后肠梗阻有关的研究之外),在咖啡中的异质性很高。使用的咖啡种类和方法质量不太高。此外,与研究特定咖啡成分的效果相反,没有发现使用咖啡本身来测试运动相关参数的动物研究,这将在下面讨论。3.2.咖啡因体外研究主要测试了咖啡因的药理作用非常复杂。因此,咖啡因是一种非选择性腺苷能拮抗剂。此外,在许多细胞类型中,咖啡因通过ryanodine受体(RyR)从内部存储中释放钙(Ca2 +),并通过抑制磷酸二酯酶的活性来增加环磷酸腺苷(cAMP)的含量[158]。有趣的是,咖啡因已被用作研究沿胃肠道运动功能参与的肠壁不同成分的收缩和/或电学特性的工具[159],包括肌间神经丛(神经元和神经胶质细胞),平滑肌细胞和ICC以及它们对细胞内钙动力学的依赖性。咖啡因在胃肠道平滑肌中体外产生的作用已使用不同的技术进行了测试,包括记录器官浴中平滑肌条(还包含肌间神经丛和ICC)的收缩活性,以及培养的单个平滑肌的电生理记录。肌肉细胞。在这些实验中,咖啡因的作用表现为剂量依赖性,低剂量(0.1–0.3 mM)放松,高剂量(> 0.3 mM)产生短暂收缩,然后松弛[160]。此外,相对较高剂量(1-10 mM)的咖啡因会抑制来自不同物种(包括人空肠)的不同胃肠组织中的慢波(由ICC产生)[161]。此外,尽管早期有报道说咖啡因对神经胶质细胞没有作用[163],但最近的研究表明,咖啡因浓度为0.01 mM时,在小鼠结肠的所有肌层神经胶质细胞中均会立即产生持续的Ca2+响应,从而证实它们具有ryanodine-敏感的Ca2 +存储[164]。因此,咖啡因可能以相对低的剂量调节神经胶质细胞功能,进而可能通过与肌层神经元的协调反应而对胃肠运动活动产生影响。已经使用培养的分离的神经元/神经节或整装制剂研究了咖啡因对肌层神经元的影响(见图1和2)。在培养的肌层神经元中,咖啡因显示出浓度依赖性地以定量和饱和的方式刺激细胞内Ca2 +释放,这些细胞通过去极化诱导的Ca2 +增加而被补充。已证明这种作用对RyR拮抗剂ryanodine,dantrolene和procaine敏感,但不涉及cAMP磷酸二酯酶抑制作用[163]。但是,咖啡因可释放的对yananodine敏感的钙存储并不是胞质Ca2 +存储和钙的唯一子集。在咖啡因作用达到最大程度的Fura-2加载的肌层神经元中应用ionophore ionomycin后,细胞内游离Ca2 +([Ca2 +] i)进一步增加[163]。这些研究在培养的肌层神经元/神经节中的一个重要缺点是,尽管清楚地观察到了对咖啡因(以及对其他药物)的反应的异质性,但很难确定肌层神经元的功能亚群,这表明它可能会影响不同的神经元亚型[163]。 图2.肌层神经元的细胞内记录。一种固定的整装制剂,经过免疫组织化学处理以显示Calretinin阳性神经元,用于说明如何使用电流钳电生理方法记录肌层神经元的电活动。豚鼠回肠整装制剂中的Calretinin免疫反应性可以区分肌间神经丛的不同成分:主要成分,包括肌间神经节和结节间链;沿周向延伸的次要分支;以及第三神经丛,即与兴奋性纵向肌肉运动神经元衍生的轴突相对应的细神经网[165]。细胞内记录电极以绿色(右)表示-该电极允许记录神经元电活动,并通过去极化或超极化连续或脉冲电流对细胞进行直接细胞内刺激,并进行标记物注射以使受刺神经元能够免疫组织化学处理后可视化。红色(左)表示用于局灶性细胞外刺激的电极。将其放置在结节周围神经链的顶部。如果股线携带突触在神经元突触上的轴突(以虚线表示),则局灶性刺激(表示为红色爆炸符号)将导致神经递质从轴突末端释放,并在突触神经元上突触后电位(见图)。 3用于肌层神经元的形态和电生理分类。为了评估药物对肌层神经元特定亚群的影响,使用整装制剂是更好的选择。整个准备工作是附有肌间神经丛的纵向肌肉的“薄片”。剖开其他肠壁层,即粘膜,粘膜下层和环形肌,以促进肌内神经元电活动的细胞内记录。此外,这些实验通过在固定后使用免疫组织化学方法在记录过程中通过细胞内注射标记物来标记刺入神经元的形态及其化学密码,从而定义了刺入神经元的形态(图2)。在这些实验中,证明了对ryanodin敏感的钙存储在肌电神经元的特定亚群中起特别重要的作用,其神经电生理特征(在整装制剂中)高度依赖于[Ca2 +] i,即所谓的AH / II型神经元(图3),被确定为内在的初级传入神经元[166]。从形态上讲,这些是具有平滑体细胞的多极神经元,并投射到粘膜和其他肌层神经元。在电生理上,这些神经元的特征在于动作电位(AP)相对较宽(即它们的下降阶段) AP显示“驼峰”,其后是两个超极化(AHP)。尽早的(ms)AHP;以及持续时间较长(4–20 s)的AHP [166]。与心肌细胞相似,广泛的AP归因于钠和钙通过电压门控通道的流入。重要的是,AP期间Ca2+的进入与从RyR敏感存储释放的[Ca2+] i的瞬时增加有关,这会增加钙的流入。钙诱导的钙释放(CICR)进而通过钙操纵的钾通道导致钾外流,这是这些神经元缓慢AHP的基础。因此,已经提出依赖活动的CICR是根据感觉输入强度对AH神经元输出进行分级的一种机制。此外,AH神经元显示出相对较高的[Ca2+] i静息水平,通过涉及钾流出的相同间接机制,它们保持较低的静息电位并降低其兴奋性[167]。 图3.肌间神经元的形态和电生理特征及咖啡因对AH/II神经元的影响。通过使用图2所示的细胞内记录方法,可以区分两类主要的肌间神经元。根据形态学(左),神经元被分为第一型(上)或第二型(下)。这些神经元大体上分别对应于电生理类型S和AH。S神经元的APs较短,而AH神经元的APs较宽,依赖于Na~+和Ca2~+的进入,在AP的下降期由于Ca2~+的进入而呈现“驼峰”。S神经元对单焦点电刺激的反应具有快速兴奋性突触后电位(f-EPSPs),这在AH神经元中是不存在的,尽管这两类神经元都可能对具有缓慢兴奋性突触后电位(S-EPSPs)的焦点刺激序列作出反应。最后,由于K+外流依赖于ryanodine依赖储存释放的细胞内游离Ca2+([Ca2+]i)的增加,AH神经元呈现s-AHP。这种s-AHP被咖啡因增加和延长,使这些神经元,这是内在的外周神经传入,不易兴奋。缩写:AP,动作电位;f-EPSP,快速兴奋性突触后电位;RP,静息电位;s-AHP,超极化后缓慢;s-EPSP,缓慢兴奋性突触后电位。浅灰色块,带点边框,刺激伪影;红色爆炸符号,焦点刺激。有趣的是,咖啡因激活AH肠系膜神经元会导致其兴奋性降低,这是由于从依赖于赖氨酸的储库中释放的[Ca2 +]i增多以及随之而来的钾介导的超极化[167,168]。目前尚不清楚如何将其转化为体内作用,但重要的是要记住,AH/ II型肌层神经元将投射延伸至粘膜,咖啡因可能直接激活它们,从而导致这些体外研究提示了间接抑制作用。3.3.多酚类伍德和合作者使用肠内神经元和CA的细胞内记录作为了解与食物过敏有关的分泌性腹泻的病理生理基础的工具[169]。抗原引起的肥大细胞在小肠和大肠中的脱粒开始立即的(I型)超敏反应,其特征是粘膜分泌过多[170]和肌肉组织的强收缩[171],它们对河豚毒素和阿托品敏感,这意味着这些反应暗示了ENS的参与。然后,暴露于抗原会触发协调的免疫神经防御程序反应,以消除抗原性威胁,从而转化为水样腹泻,粪便紧迫和腹痛[172]。在Wood等人的研究中,CA是一种5-脂氧合酶抑制剂[173],能够部分抑制豚鼠小肠中β-乳球蛋白诱导的粘膜下神经元的过度兴奋。食物过敏相关的过敏反应模型[169]。因此,该研究表明白三烯参与了粘膜下神经元对食物抗原的分泌反应。然而,据我们所知,到目前为止,尚未对食物过敏背景下CA对肌间神经元的体外作用进行测试。值得注意的是,CA和CGA可能在帕金森氏病(PD)包括ENS方面发挥重要的神经保护作用,这在第4节中进行了讨论。但是,据我们所知,据我们所知,尚未在PD的临床前模型或患者中改变这些多酚对胃肠动力的潜在影响。3.4.膳食纤维膳食纤维也存在于咖啡中。我们的小组评估了胃内施用钡剂后的放射照相方法对两种被提议作为膳食纤维天然来源的咖啡衍生副产物对体内大鼠胃肠道运动性的影响(图1B说明了此程序)。在其中之一中,进行了不同的实验以评估速溶咖啡渣(SCG)的性质[174]。在第1、14和28次胃内SCG给药后进行了胃肠动力研究。该产品在小肠(由于大鼠盲肠的到达速度明显快于对照大鼠)和结肠(由于粪便颗粒的形成在暴露于SCGs中的速度也比在溶媒中更快)加速了运输。治疗的动物)。但是,这种作用仅限于在第一次SCG剂量后的第一次放射照相期间,而在第14或28剂剂量后并不明显。因此,尽管在任何动物中均未发现运动能力受损的迹象,但SCG给药后急性产生的膳食纤维效应似乎伴随着耐受性的发展。该研究表明,SCG的急性促动力作用可能受到短链脂肪酸(SCFA)的影响,短链脂肪酸已被SCGs发酵过程中结肠菌群从中浓咖啡和深色烘焙咖啡豆中以高于10 mM的浓度释放出来。 [175],SCFA(10-200 mM)刺激结肠运动[176]。有趣的是,另一种咖啡副产品咖啡银皮的水提取物也可能显示膳食纤维的作用,因为用咖啡银皮提取物发酵28天的大鼠粪便中的总SCFA较高[177]。尽管仍然需要确定其对胃肠动力的精确体内影响,但它可能与其中存在黑素有关(请参阅第3.5节)。点击:查看更多医学文章 查看生物学文章 咖啡及其成分对胃肠道和脑肠轴的影响(上) 咖啡及其成分对胃肠道和脑肠轴的影响(结论) 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-27 20:35:41
咖啡及其成分对胃肠道和脑肠轴的影响
咖啡及其成分对胃肠道和脑肠轴的影响阿马亚·伊里安多·德洪(Amaia Iriondo-DeHond),何塞·安东尼奥·乌兰加(JoséAntonio Uranga),玛丽亚·多洛雷斯·德尔卡斯蒂略(Maria DoloresdelCastillo)和拉奎尔·阿巴洛(Raquel Abalo)引文:A。Iriondo-DeHond;乌兰加(J.A.)马里兰州德尔卡斯蒂略; Abalo,R.咖啡及其成分对胃肠道和脑肠轴的影响。营养素2021、13、88(本文属于《人类健康咖啡和咖啡因消费特刊》)收到:2020年12月9日接受:2020年12月25日发布时间:2020年12月29日 1.西班牙食品科学研究院(CIAL)(CSIC-UAM)生物活性与食品分析系食品生物科学小组,西班牙马德里28049,CalleNicolásCabrera2.消化系统生理病理学和药理学高级研究小组,NeuGut-URJC,卫生科学学院基础卫生科学系,雷亚·胡安·卡洛斯大学(URJC),阿夫达大学。de Atenas s / n,28022马德里,西班牙3.西班牙国家研究委员会药物化学研究所(Unidad Asociada I + D + i delQuímicaMédica研究所,IQM)联合单位,CSIC Consejo Superior de InvestigacionesCientíficas,西班牙马德里28006应与之联系的作者。 摘要:咖啡是全球消费最流行的饮料之一。烘焙咖啡是数千种生物活性化合物的复杂混合物,其中一些具有许多潜在的健康促进特性,已在心血管和中枢神经系统中进行了广泛研究,而对其他人体系统的关注则相对较少,例如胃肠道及其与大脑的特殊联系,称为脑肠轴。这篇叙述性评论概述了咖啡冲泡的效果;其副产品;及其在胃肠道粘膜上的成分(主要涉及通透性,分泌和增殖),负责其运动功能的肠壁的神经和非神经成分以及脑肠轴。尽管有体外,体内和流行病学研究表明,咖啡可能对消化道产生多种影响,包括对粘膜的抗氧化剂,抗炎和抗增殖作用,以及对外层肌肉的促运动作用,但在很大程度上仍然令人惊讶地未知。需要进一步的研究,以了解咖啡对胃肠道某些健康促进特性的作用机制,并将这一知识传递给行业,以开发功能性食品来改善胃肠道和脑肠轴的健康。 关键词:脑肠轴;咖啡因;咖啡;咖啡副产品;膳食纤维;肠溶肠胃;黑色素黏膜肠系膜1. 介绍在过去的几年中,咖啡已从电影中的反派变成了反常的英雄。 1991年,世界卫生组织(WHO)的专门癌症研究机构国际癌症研究机构(IARC)将咖啡归类为“可能对人类致癌”(第2B组)。该评估是基于有关膀胱癌与咖啡摄入量相关的有限证据进行的。 2016年,经过对1000多个观察和实验研究的重新评估,来自10个不同国家的23位科学家得出结论,广泛的科学文献没有显示咖啡消费与癌症之间有关联的证据[1]。因此,咖啡从第2B组(“可能对人类致癌”)转移到第3组(“无法分类为致癌性”)。此外,IARC还发现有证据表明,喝咖啡实际上可以帮助减少某些癌症(结肠癌,前列腺癌,子宫内膜癌,黑色素瘤和肝癌)的发生[1,2]。“咖啡悖论”包括以下事实:咖啡因会升高血压,但喝咖啡却会降低患高血压的风险[3]。实际上,尽管每天喝咖啡与心脏病的患病率降低有关,咖啡饮用者吸烟的趋势[4]。此外,每天适量饮用3-4杯咖啡可延长寿命,降低全因死亡率[5]。饮用咖啡还与代谢疾病(2型糖尿病,代谢综合症,肾结石和不同的肝脏疾病)和神经退行性疾病(帕金森氏症和阿尔茨海默氏病)有基于证据的有益关联[2]。因此,建议饮用咖啡作为健康饮食的一部分[6,7],因为它含有几种具有治疗特性的生物活性化合物[8]。表1显示了生咖啡,烘焙咖啡和酿造咖啡的化学成分。烘焙过程严重影响了生咖啡豆的成分,在烘焙过程中,尤其发生了美拉德反应。该反应减少了游离绿原酸(CGA)的数量,但形成了其他抗氧化剂化合物,例如将CGA掺入其骨架的黑色素(表1)[9]。这些化合物以及在加工过程中形成的其他化合物,可导致烘焙咖啡豆呈棕色,并有助于咖啡的抗氧化能力[10]。另一方面,美拉德反应产生新形成的污染物,例如丙烯酰胺。欧盟委员会表示,可以通过以下缓解措施降低咖啡中丙烯酰胺的含量:控制烘烤条件或用天冬酰胺酶处理[11]。烘焙咖啡是数千种生物活性化合物的复杂混合物,其中一些具有潜在的促进健康的特性,例如抗氧化剂,抗炎,抗纤维化或抗增殖作用[5]。表1.阿拉比卡咖啡生,烘焙,过滤和冷煮咖啡的化学成分。冲泡程序也将影响最终咖啡杯的生化成分(表1)[30]。咖啡冲泡是一种固液萃取,包括研磨咖啡的吸水,热水中咖啡的溶解以及从废咖啡渣中分离出水提取物。许多变量都会影响咖啡杯的组成,例如咖啡颗粒大小,提取时间,压力,过滤器类型和水温等[31]。在过去的几年中,消费者对“冷冲泡”表现出了极大的兴趣,这种冷冲泡是用冷水(室温或冷冻水)煮制长达24小时的咖啡饮料[32]。最近的研究表明,冷热冲泡的咖啡差异很小但很重要,特别是所得咖啡的总抗氧化能力[21]。尽管冷冲泡咖啡中尚未鉴定出黑色素(表1)[33],但水提取温度会导致这些分子的溶解度不同[34]。因此,需要进一步的研究来完成这种流行饮料的化学表征。无论采用哪种冲泡方法,咖啡及其成分都会对人体产生深远的影响,上面已经提到了其中的一些。对于任何其他食物或饮料,胃肠道是与咖啡接触的第一个身体系统,并且确实会发生局部影响。当然,在吸收了不同的咖啡成分后,还会发生其他胃肠道疾病,这些也值得一提。因此,本综述的第一部分着重于咖啡,其副产品及其成分在胃肠道中产生的影响。这些可能影响胃肠道不同器官的肠壁不同成分(即粘膜,肌肉和内在神经)的功能(图1),因此其作用与胃肠道癌,炎症和粘膜有关将讨论功能(通透性,分泌性)以及运动功能。 图1.(A)前胃,空肠回肠(小肠的最长部分)和结肠壁的组织学外观。 (B)在有意识的大鼠中,在给予胃内钡剂后的不同时间点,通过射线照相方法观察大鼠胃肠道的器官。由于大鼠不呕吐,钡只能向肛门方向发展:对比1小时后,可以区分大鼠胃的两个部分(前庭胃和体)以及十二指肠和空肠回肠。对比后4小时,仍然可以部分看到胃和小肠,但是盲肠充满了对比。造影后8小时,几乎看不到胃和小肠,但盲肠充满造影剂,结肠内有一些粪便颗粒。 (C)显示肠神经系统外观的显微图像:组织学切片中大鼠回肠壁内的粘膜下层(SMP)和肌间神经丛(MP)的位置被苏木精/曙红(H / E)染色;解剖粘膜,粘膜下层和环形肌,仅留下纵肌层并附有肌间神经丛的中,右,整装或“片状”制剂(来自豚鼠回肠);对整个制剂进行免疫组织化学处理,以显示所有带有泛神经标记HuC / D的神经元(中),或对神经元一氧化氮合酶(nNOS)具有免疫反应性的神经元的特定亚群,其躯体和神经纤维都可以不是核,可以区分(正确)。 此外,胃肠道通过所谓的脑肠轴(或肠脑轴)在功能上与大脑连接[35]。而咖啡及其影响大脑中的成分已被深入研究,脑肠轴上的成分受到的关注相对较少。但是,关于心理因素与肠道感觉,运动和免疫功能之间的联系,已经积累了大量证据[36]。因此,现在已经认识到,健康的脑肠轴是情绪和情感稳定,对压力的适当反应以及内脏疼痛调节的关键[37]。实际上,人们对肠胃相互作用在胃肠道疾病中重要性的认识的提高甚至引起了胃肠病学领域的发展[38,39]。因此,本篇综述还简要介绍了咖啡,咖啡副产品及其成分对脑肠轴的影响及其在该领域的可能作用。 2.咖啡和胃肠道:专注于粘膜为了理解其假设的刺激或抑制特性及其作用机理,已经研究了咖啡对胃肠道的影响多年。通过众多流行病学研究已经解决了这个问题。尽管有证据表明咖啡可能与某些癌症的风险降低有关,但这些研究主要集中在肿瘤疾病上,结果相矛盾。确实,系统的审查发现咖啡对肝癌,肝细胞癌和乳腺癌具有保护作用。然而,咖啡似乎增加了患肺癌的风险,而咖啡与其他癌症(如胰腺癌,膀胱癌,卵巢癌和前列腺癌)之间的关系尚存争议[40,41]。关于消化道癌症,大多数荟萃分析显示咖啡与结直肠癌(CRC)风险之间存在中等或剂量-反应-负相关[42-48]。特别是,在以色列北部地区[49]或在日本女性中[50],发现咖啡的摄入与CRC风险呈反比关系。此外,最近的一项前瞻性观察性研究包括1171名患者,其中大多数患有转移性CRC,对于每天喝四杯或更多杯咖啡的患者,其生存期最多可增加8个月[51]。在评估有时可能会产生冲突的结果时,与种族或性别相关的差异似乎很重要。因此,Micek等人进行了荟萃分析。 (2019)[52]没有发现咖啡摄入量与CRC风险之间存在关联的任何证据,但当使用混合人群时,在从未吸烟者和亚洲国家中,咖啡摄入与结肠癌风险降低相关,并且与不考虑女性,永不吸烟者和欧洲国家,普通人群患直肠癌的风险增加。同样,对24项关于CRC的前瞻性研究的系统评价和荟萃分析表明,咖啡对男女混合使用以及仅对男人有保护作用。关于种族,在欧洲男性和亚洲女性中发现了重要的保护性联系。不含咖啡因的咖啡在男人和女人中都表现出保护作用[53]。相反,其他研究人员没有发现咖啡的保护性证据。值得一提的是Dik等人进行的EPIC队列研究。 (2014)[54],涉及超过40万欧洲人,并且显示咖啡消费与CRC之间没有关联。 Park等。 (2018)[55]在一项涉及4096名患者的大型前瞻性多种族队列研究中,也未发现CRC与咖啡摄入量之间存在关联。同样,瑞典妇女的前瞻性研究发现,CRC与每天摄入四杯或更多杯咖啡之间没有任何关系[56]。在英国人群中,同一类型的研究还发现咖啡和胃,小肠或结直肠癌之间没有关系[57]。在这方面,胃癌的结果难以评估。一些荟萃分析证实咖啡可以降低患胃癌的风险[58],但在其他情况下,结果却是矛盾的,直接取决于患者的性别[59,60]或所研究的胃部,直接咖啡摄入与胃card门癌之间存在相关性,而影响胃的其他癌症则没有[61]。同样,与食道癌的关系也不清楚,因为有系统的评论认为咖啡摄入量与这种癌症的发病率之间的关系不存在[61,62],或可归因于饮料的温度[63]。 ]。在相反,一项比较咖啡和茶的荟萃分析发现咖啡和食道癌之间存在显着相关性[64]。关于非肿瘤病理的流行病学研究结果也存在争议。一些荟萃分析表明,整体咖啡似乎并不是造成慢性胃食管反流病(GERD)的原因[65],而一项意大利研究则发现咖啡对巴雷特食管(BE)患者有不良影响[66]。相反,在美国进行的一项调查并未发现咖啡摄入与BE风险之间有任何关联[67]。上述可变性可能是由于许多原因造成的,包括性别,种族,生活方式以及咖啡中存在的多种生物活性化合物。实际上,很快就变得很明显,咖啡因被认为是咖啡的主要成分,并不是咖啡中唯一的生物活性化合物。特别是在上世纪下半叶的发现中,即使不含咖啡因的咖啡也会引起胃酸分泌的增加,并降低下食道括约肌的能力[68,69],这导致了对这种情况的调查。其他咖啡衍生化合物的生理作用。如上所述,咖啡的成分取决于许多因素,例如咖啡的来源,制备方法(水蒸气温度,烘烤等),从而对生理和微生物组产生不同的影响[41,70-73]。因此,在动物模型或志愿者体内进行的研究,或在分离的细胞体外进行的,分别评估咖啡中各种化合物的作用的研究,远少于流行病学报告。新陈代谢的种间差异或测试的不同剂量对所得结果有很大影响。但是,尽管仍然不完整并且以某种方式导致矛盾的结果,但是研究咖啡表现出咖啡作用的机理以及引起咖啡作用的特定化合物的努力已经为这个问题提供了一些启示,如下所示。2.1.体外研究2.1.1.咖啡自1980年代以来,已有几项研究调查了咖啡或其衍生物是否具有致癌作用。这些研究确定了各种咖啡制剂中潜在有害的化合物,例如过氧化氢(H2O2)。然而,这些研究是在缺乏过氧化物酶体酶的细菌模型中进行的,因此这种假定的致癌作用不适用于人类。也没有发现咖啡中负责这些潜在有害作用产生的化合物[74,75]。同样,已经在咖啡制剂中研究了抗炎特性,例如咖啡“木炭”,这是一种通过烘烤生干咖啡并将其研磨成粉末而制成的草药。在这种情况下,肠细胞的屏障功能增强,炎症介质如白介素(IL)IL-6,IL-8,肿瘤坏死因子(TNF),甲基接受趋化蛋白1(MCP-1)和前列腺素(PG)E2被抑制[76]。但是,这种制剂还可以保存咖啡中的大多数化合物,因此很难确定引起这些作用的特定分子。顺带一提,将CaCo2细胞(人结肠直肠腺癌细胞系)与常规,过滤,脱咖啡因或速溶咖啡一起孵育会诱导尿苷二磷酸(UDP)葡萄糖醛糖基转移酶(UGT1A)的转录,这是一种间接蛋白质抗氧化性能。在这种情况下,负责这种上调的分子仍然难以捉摸[77]。2.1.2.咖啡因生物碱咖啡因是研究最多的咖啡成分之一[41]。尽管需要很高剂量的咖啡因才能证明它们具有抗氧化特性[78]。相反,当使用生理浓度时,咖啡因通过氧自由基吸收能力测量未显示任何抗氧化活性。但是,使用1-甲基黄嘌呤时,抗氧化活性显着和1-甲基尿酸,是人体中咖啡因的主要代谢产物。这些化合物的抗氧化作用分别相当于抗坏血酸和尿酸产生的抗氧化作用[79]。但是,这并不排除其他机制的参与。结肠细胞系也已用于评估咖啡因的抗炎活性。在有咖啡因的情况下,人结肠直肠腺癌细胞系CaCo2和3T3-L1脂肪细胞的共培养表明,咖啡因抑制炎性细胞因子白介素(IL)IL-8和纤溶酶原激活物抑制剂1(PAI-1)的分泌并降低脂肪在脂肪细胞中积累,而对3T3-L1细胞没有影响[80]。与此相关的是,还共培养了CaCo2,杯状细胞和巨噬细胞细胞系,以研究其对与炎症性肠病(IBD)相关的机制的影响。实际上,最近有关咖啡因的研究倾向于显示相反的结果。此外,在细胞周期从G1到G2的过渡过程中,咖啡因还显示出对RKO细胞放射疗法的敏感性增加[81]。咖啡因还可以与抑制基因磷酸酶和张力蛋白同源物(PTEN)协同作用,从而抑制细胞生长并诱导几种人CRC细胞系中的细胞凋亡,而不诱导成纤维细胞中的凋亡。这种作用是通过丝氨酸/苏氨酸激酶(AKT)激酶途径的下调和p44/42MAPK途径的调节而诱导的,即使在没有p53的情况下也是如此[82]。此外,咖啡因抑制在低氧条件下培养的HT29 CRC细胞中的低氧诱导因子1(HIF-1)。它还降低了血管内皮生长因子(VEGF)启动子的活性和IL-8的表达,而IL-8的表达是肿瘤血管生成所必需的。在这种情况下,咖些差异。还必须考虑的是,体外研究可能无法完全反映多细胞生物中的复杂关系,也不能最终反映出体内不同组织的剂量。关于这一点,Guertin等。 (2015)[87]研究了咖啡饮用者中大量的血清代谢产物,发现某些咖啡因相关代谢产物与CRC呈负相关。需要进行体内实验研究,以了解咖啡因与癌症之间确切关联的机制。2.1.3.多酚类多酚是咖啡中存在的其他重要化合物。它们包括不同浓度的CGA,包括奎宁酸和反肉桂酸,咖啡酰奎尼酸(CQAs),尤其是5-O-咖啡酰奎尼酸(5-CQA)以及CGA的一种代谢物咖啡酸(CA) ),是研究最多的[70,73]。多酚在低咖啡因的咖啡和普通咖啡中均具有很强的抗氧化性能,并且还可以与CGA浓度成比例地降低培养成肌细胞中促炎因子的激活,例如核因子-kβ(NF-kβ),其中普通咖啡的效力是低咖啡因的咖啡的两倍[ 88]。同样,赵等。 (2008)[89]证明,5-CQA可能以剂量依赖的方式在人肠上皮CaCo2细胞中阻断H2O2或肿瘤坏死因子受体(TNF-R)激活诱导的IL-8分泌。这些作用很有趣,因为促炎因子的过度表达和活性氧(ROS)的增加与DNA损伤以及重要疾病(例如癌症)的发病机理中涉及的多种细胞信号通路密切相关[41,90]。此外,5-CQA尤其是CA抑制细胞生长啡因可能会通过抑制其磷酸化来抑制诸如细胞外信号调节激酶(ERK1 / 2),p38和AKT等激酶。此外,它还抑制了腺苷A3受体刺激的细胞迁移[83]。咖啡因的这些作用在不同来源的细胞中或与其他分子协同施用时可能不同。因此,咖啡因不能抑制JB6 P上皮细胞系中ERK的磷酸化以及随之而来的表皮生长因子(EGF)和H-Ras诱导的肿瘤转化[84]。同样,咖啡因激活了Colo-205 CRC细胞系中的ERK信号通路,导致抗凋亡蛋白髓样细胞白血病1(Mcl-1)的增加和对紫杉醇的更高耐药性[85]。尽管在这种情况下与咖啡因的孵育仅持续了20小时,但HT-29细胞系却未观察到这种效果[86]。可以考虑细胞系的特殊性,暴露时间和/或测定的咖啡因浓度来解释这HT-29 CRC细胞系从细胞周期的G1期到G2 / M期的过渡[91]。与此相关的是,已经证明CA影响同一细胞系中细胞周期蛋白D1的表达。细胞周期中G1 / S过渡需要细胞周期蛋白D1,而在许多癌症中细胞周期蛋白D1过度表达。该蛋白的水平通过信号转导子和转录激活因子5(STAT5)的过表达以及激活转录因子2(ATF-2)蛋白表达的降低而下调[92]。 STAT5的过表达可能导致细胞凋亡增加,而ATF-2表达降低则可能具有抗癌作用[73]。与咖啡因一样,已证明CA对ERK磷酸化的抑制具有直接作用,其结果是JB6 P1细胞的肿瘤转化的下调[84]。CA还可以诱导细胞凋亡并降低其他结直肠细胞系(如鼠CT26细胞系)以及来自不同来源的细胞系(如白血病或内皮细胞)的侵袭性[73]。相反,崔等。 (2015)[86]没有发现CA或CGA对同一HT-29细胞系具有任何抗增殖作用。然而,在这种情况下,测定的孵育时间较短([86]中为20小时,[91]中为48-96小时)。影响蛋白质表达的另一个重要因素是表观遗传标记。这种调节的关键因素之一是在DNA中添加了甲基。 5-CQA和CA已成为体外DNA甲基化的强抑制剂。当测试更高的浓度时,DNA甲基转移酶的抑制率达到正常值的80%[93]。这种效果的含义尚待确定。最后,多酚还可能对上皮通透性产生一定影响。T84CRC细胞安装在Ussing型腔室中,并在生理浓度的羟基肉桂酸和类黄酮存在下孵育,表明其中一些(例如阿魏酸和异阿魏酸)显着增加了紧密连接复合物的蛋白质表达(zonulin 1( ZO-1)和claudin-4),但减少其他蛋白,例如occludin。相反,CA对ZO-1或occludin的转录没有影响[94]。2.1.4.二萜二萜是脂肪酰基酯,作为咖啡生物活性化合物也引起了人们的注意。它们在咖啡豆和未过滤咖啡中的含量可变,但在过滤和可溶咖啡中的含量很小[41,73]。研究最深入的是卡赫威醇,已被证明是体外细胞活力的有效抑制剂。与咖啡因,CA或CGA相比,HT-29 CRC细胞在以较低的浓度暴露于kahweol后会降低其生存能力。这种作用由促凋亡的胱天蛋白酶3的增加和抗凋亡的Bcl-2和磷酸化的AKT的表达以剂量依赖性的方式介导[86]。还已经在其他结肠直肠癌细胞系(HCT116,SW480和LoVo)中观察到了kahweol的凋亡作用。在这些细胞系中,除了HT-29系外,kahweol还刺激活化转录因子3(ATF-3),该因子已知在CRC中起肿瘤抑制作用,下调细胞周期蛋白D1并增强p53蛋白。抑制ERK1 / 2和糖原合酶激酶3β(GSK3β)激酶可阻断kahweol介导的ATF-3表达[95]。因此,同一作者发现,kahweol在不影响其mRNA水平的情况下降低了细胞周期蛋白D1的浓度。蛋白酶体的降解可能是这种降低的原因,因为蛋白酶体抑制剂阻止了细胞周期蛋白D1蛋白水平的降低。据此,kahweol诱导ERK1 / 2,c-Jun N端激酶(JNK)和GSK3β激酶的激活,导致细胞周期蛋白D1磷酸化,从而导致蛋白酶体降解。在正常结肠细胞系CCD-18-Co中未观察到kahweol的抗增殖作用[95]。另外,kahweol可能会显着减弱热激蛋白70(HSP70)的表达,从而导致细胞毒性作用,这种细胞在与伴侣抑制剂雷公藤内酯醇孵育时会增强[86]。 NF-kβ是与炎症和免疫反应有关的另一个关键调控因子,在许多癌症中均过表达[96]。 Kahweol通过抑制IkB激酶(IKK)活性来阻断NF-kβ的活化。同样,kahweol和cafestol(另一种二萜)均以剂量依赖性方式显着抑制促炎性环氧合酶2(COX-2)蛋白及其mRNA表达[97]。卡瓦酚和咖啡酚的抗氧化特性也有已在非消化性细胞类型(例如肝细胞,神经元或成纤维细胞)中得到证实,在这些类型中,它们对H2O2诱导的氧化性DNA损伤具有高度保护作用,并通过不同的机制(例如诱导细胞保护性酶)产生超氧自由基例如血红素加氧酶-1(HO-1)[98-100]。2.1.5.美拉德反应产物:黑色素最后,在焙烤过程中形成的黑色素表现出有趣的促进健康的特性。确实,咖啡类黑素具有多种生物学活性,例如抗氧化剂,抗微生物,抗龋齿,抗炎,抗高血压和抗糖化活性[10]。可以认为,具有抗氧化性能的黑色素含量取决于烘烤条件[15]。这些抗氧化特性可能高于其他来源,如在体外模拟胃消化模型[101]或其他非消化系统[41,102]中抑制脂质过氧化的能力所表明的。但是,涉及此类功能的确切机制仍有待详细研究。2.2.体内研究2.2.1咖啡在动物中进行的首次研究似乎证明了咖啡的潜在保护作用。确实,已经证明,用咖啡长期喂养啮齿动物在某些情况下(如在胃中)自发性肿瘤的发生率没有增加,但有所减少[103,104]。同样,咖啡可以保护大鼠免受结肠中1,2-二甲基肼等致癌物质的影响,尽管不在小肠中[105],并且还诱导了大鼠抗氧化剂和细胞保护性转移酶UGT1A的14倍诱导作用。转基因小鼠的胃[77]。但是,其作用机理尚未完全阐明。这样,在结肠癌患者中每天喝咖啡超过1杯咖啡与ERK的显着减弱有关,ERK是直接参与结肠癌发展的一种激酶[84]。另一方面,已经发现咖啡消费者和非消费者在与咖啡相关效应有关的基因的DNA甲基化水平方面存在差异。咖啡的潜在表观遗传作用也可能由性激素和细胞类型介导,因为它仅在从未使用过激素治疗的女性中以及从血液而不是唾液中的单核细胞中观察到[106]。咖啡还增加了健康志愿者对蔗糖的通透性,从而与胃粘膜的短暂损伤有关[107]。最后,事实证明,即使每天仅喝3杯咖啡,食用咖啡也会对实验动物和人类的肠道菌群产生影响。大肠杆菌,肠球菌,梭状芽孢杆菌和拟杆菌的数量减少。已经报道了乳杆菌属物种的上调。和双歧杆菌属。人口。在任何情况下,都需要确定咖啡引起的这些变化对微生物群的确切影响[108-110]。点击:查看更多医学文章 查看更多生物学文章 咖啡及其成分对胃肠道和脑肠轴的影响(中 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-27 20:14:00
人类冠状病毒:病毒与宿主相互作用的综述(下)
人类冠状病毒:病毒与宿主相互作用的综述(上) 7.人冠状病毒与NF-κB途径NF-κB蛋白是转录因子家族,可调节基因表达以控制广泛的生物学过程,例如细胞死亡,炎症,先天性和适应性免疫反应。哺乳动物的NF-κB家族由五个成员组成,即RelA(也称为p65),RelB,c-Rel,NF-κB1p50和NF-κB2p52,它们在细胞质中形成二聚体。已经确定,病毒病原体经常靶向NF-κB途径以增强病毒复制,宿主细胞存活和宿主免疫逃避[199,200]。 NF-κB信号传导的主要途径有两种:经典途径和非经典途径。在经典途径中,潜在的NF-κB与抑制剂IκB蛋白形成复合物,并被隔离在细胞质中。如上所述,病毒病原体的存在会激活各种膜传感器,例如RIG-I,后者会诱导IκB激酶(IKK)复合物磷酸化IκB,并随后引起泛素化。 IKK复合物由三聚体亚基组成,包括两个催化亚基IKKα和IKKβ,以及调节亚基IKKγ(也称为NF-κB基本调节剂或NEMO)。因此,NF-κB从IκB的抑制作用中释放出来并转移到核中,在核中,它可以单独或与其他转录因子(包括AP-1,Ets和Stat)组合刺激靶基因的转录[201]。另一方面,非经典途径与IκB降解无关,而是依赖于可诱导的p100加工。 NF-κB诱导激酶(NIK)(一种MAPKKK)的激活可诱导IKKα二聚体复合物的磷酸化和激活,进而激活p100。这导致p100螯合释放p52 / RelB异二聚体。 p52 / RelB异二聚体易位至细胞核,以激活与许多细胞功能有关的靶基因,特别是细胞增殖,存活和先天免疫[202]。7.1.NF-κB途径的调节NF-κB途径已被证明在HCoV感染中起重要作用。重组SARS-CoV感染小鼠的肺中NF-κB被激活[203]。但是,在同一项研究中,随后用NF-κB抑制剂对这些感染的肺细胞进行处理不会影响病毒滴度,但会降低TNF,CCL2和CXCL2的表达,因此表明NF-κB对于SARS-CoV介导的SAR诱导是必不可少的。促炎细胞因子[203]。还显示出HCoV-229E介导外周血单核细胞(PBMC)中的IL8诱导,可被NF-κB抑制剂减弱[204]。 NF-κB的调节是通过HCoV的几种病毒蛋白介导的(图5)。7.1.1.结构蛋白在SARS-CoV中,已证明S,M,E和N结构蛋白会干扰NF-κB信号传导。最近的一项研究报道了用纯化和重组的SARS-CoV S蛋白处理过的PBMC中增强的核NF-κB活性。这些S蛋白处理过的细胞中IL8的合成和分泌可以被NF-κB抑制剂抑制,因此表明NF-κB调节了这些细胞中促炎性细胞因子的水平[204]。SARS-CoV S蛋白可能通过上游蛋白激酶C(PKC)同工酶PKCα的上调刺激NF-κB,因为S激活的ERK和JNK是PKC依赖性的[192]。尽管SARS-CoV E蛋白不能促进IL8的合成和分泌[204],但重组SARS-CoV中E蛋白的缺失会降低NF-κB的激活[203]。此外,SARS-CoV N蛋白的过表达在VeroE6细胞中以剂量依赖性方式显着增加了NF-κB荧光素酶的活性,但在Vero,HeLa和Huh-7细胞中却没有,这表明这种NF-κB的诱导可能是细胞-具体[205,206]。另一方面,免疫共沉淀实验表明,SARS-CoVM蛋白与IKKb物理结合,将其隔离在细胞质中,从而抑制了NF-κB的活化[207]。然而,尽管我们不能排除可能涉及某些其他结构或非结构性MERS-CoV蛋白的可能性,但MERS-CoV M蛋白并不影响由具有NF-κB结合位点的启动子控制的荧光素酶活性[133]。 。对于HCoV-OC43,除非受到TNFα的刺激,否则仅表达其N蛋白就无法激活NF-κB。 NF-κB活化的增强是通过HCoV-OC43 N与microRNA9的相互作用来抑制的NF-κB[208]。7.1.2.非结构蛋白和辅助蛋白以前,已证明SARS-CoV nsp1的过度表达可诱导NF-κB活化,而HCoV-229Ensp1则不能[138]。 NF-κB抑制剂的使用以剂量依赖的方式抑制SARS-CoV nsp1诱导的趋化因子表达[209]。在SARS-CoV和MERS-CoV的nsp3中发现的PLpro结构域可拮抗IFN和NF-κB的活性[139,210]。然而,在另一项研究中,SARS-CoV PLpro结构域并没有显着否定仙台病毒感染对NFκB依赖性基因表达的诱导[140]。然而,已经表明,SARS-CoV PLpro通过从IκBα去除K48连接的泛素化来抑制NF-κB的活化[211]。HCoV的其他辅助蛋白也已显示出干扰NF-κB信号传导的作用。 SARS-CoV 3a和7a蛋白的表达可显着诱导NF-κB依赖的荧光素酶活性。通过突变启动子上的NF-κB结合位点,可否定SARS-CoV 3a和7a蛋白增强IL8启动子的活性[192]。以前,在NFκB反应性启动子的控制下,表明MERS-CoV ORF4a的表达可抑制仙台病毒诱导的萤火虫荧光素酶活性,但不能抑制ORF4b和ORF5的表达[133]。然而,另一项研究表明,MERS-CoV ORF4b可适度减弱TNFα治疗诱导的NF-κB依赖的荧光素酶活性[212]。8.结论病毒与其宿主之间的关系是一件复杂的事情:来自病毒与宿主的众多因素都与病毒感染和相应的发病机理有关。在病毒感染期间,宿主必须通过采取多种防御机制来应对病毒。作为细胞内专性寄生虫,病毒还发展了各种劫持宿主机器的策略。在这篇综述中,我们首先展示了病毒因子如何操纵宿主细胞以加速其自身的复制周期和发病机理。我们还着重指出了多种细胞和病毒因素如何在长期的相互抗争中发挥作用。多年来,HCoV已被确定为影响人类的轻度呼吸道病原体。然而,正是SARS-CoV的出现使这些人类病毒成为研究领域的焦点。因此,当今大多数HCoV研究都与SARS-CoV有关。虽然最近的MERS-CoV暴发主要限于中东地区,但从过去两次暴发中的高死亡率可以看出,更多的新兴或重新出现的HCoV可能会威胁到全球公共卫生: SARS冠状病毒(10%)和MERS冠状病毒(35%)。因此,对所有HCoV的发病机理的研究将为抗病毒治疗剂和疫苗的开发获得更多见识。致谢:这项研究得到了新加坡国家研究基金会的竞争研究计划(CRP)资助(NRF-CRP8-2011-05)的部分支持,南阳的学术研究基金(AcRF)一级资助(RGT17 / 13)新加坡科技大学和教育部,以及新加坡教育部的AcRF Tier 2资助(ACR47 / 14)。作者贡献:Yvonne Xinyi Lim和Nyan Ling Ng撰写了这篇论文; James Tam。Tam和Liu Ding Xiang修改了手稿。参考文献(展示部分)1. 佩内(F.) A.Merlat; Vabret,A .;Rozenberg,F。 A. Buzyn; Dreyfus,F .;卡里乌(A.Freymuth,F .; Lebon,P.免疫受损患者的冠状病毒229E相关性肺炎。临床感染。 Dis。 2003,37,929–932。[CrossRef] [PubMed]2. 维杰根湖; E. Keyaerts; E.Moës; Maes,P .; Duson,G .; van Ranst,M.开发用于人冠状病毒OC43和229E绝对定量的一步式实时定量逆转录酶PCR分析方法。 J.临床。微生物。 2005,43,5452-5456。 [CrossRef] [PubMed]3. 琼斯,学士学位;格蕾丝·D;科克河;阿隆索,S。 Rushton,J .;说,M.Y .;麦基弗(D.穆图阿杨,J .;麦克德莫特,J。等。人畜共患病的出现与农业集约化和环境变化有关。进程Natl。学院科学美国,2013年,第21卷,第8399-8340页。 [CrossRef] [PubMed]4. Vander Hoek,L.人冠状病毒:它们引起什么?抗病毒那个2007,12,651–658。 [考研]5. Walsh2007,E.E .; Shin,J.H .;Falsey,A.R。人类冠状病毒229E和OC43感染在不同成年人群中的临床影响。 J.感染。 Dis。 2013,208,1634–1642。 [CrossRef] [PubMed]6. Gorse,G.J .; T.Z. O’Connor; Hall,S.L .; J.N.尼科尔(K.L.人冠状病毒和老年慢性阻塞性肺疾病的急性呼吸系统疾病。 J.感染。 Dis。 2009,199,847–857。 [CrossRef] [PubMed]7. N. Arbour;天,R。纽科姆,J。 Talbot,P.J.人类呼吸道冠状病毒的神经入侵。J.维罗尔2000,74,8913–8921。 [CrossRef][PubMed]8. N. Arbour;Ekandé,S.; G.Côté; Lachance,C .; Chagnon,F。塔迪厄,M。 N.R. Cashman;Talbot,P.J.人冠状病毒229E持续感染人少突胶质细胞和神经胶质细胞系。 J.维罗尔1999,73,3326-3337。 [考研]9. Jacomy,H.;弗拉戈索,G。阿尔玛赞(G.)华盛顿州Mushynski; Talbot,P.J.人冠状病毒OC43感染会诱发慢性脑炎,导致BALB / C小鼠残疾。病毒学,2006,349,335-346。[CrossRef] [PubMed]10. Vabret,A .; T. Mourez; Gouarin,S。 Petitjean,J.; Freymuth,F.法国诺曼底爆发冠状病毒OC43呼吸道感染。临床感染。 Dis。 2003,36,985–989。[CrossRef] [PubMed]11. Smuts,H.南非因急性呼吸道感染住院的婴儿的人类冠状病毒NL63感染。流感其他呼吸道。病毒2008,2,135-138。 [CrossRef] [PubMed]12. 格雷厄姆(R.L.); E.F.唐纳森; R.S.BaricSARS十年后:控制新兴冠状病毒的策略。纳特微生物牧师。 2013,11,836–848。 [CrossRef] [PubMed]13. 弗里曼,M。 Baric,R.严重急性呼吸系统综合症的发病机制和先天免疫调节机制。微生物。大声笑生物学修订版MMBR 2008,72,672-685。 [CrossRef] [PubMed]14. Peiris,J.S.M .;关Y袁凯严重的急性呼吸道综合症。 Nat.Med.2004,10,S88-S97。 [CrossRef][考研]15. 王敏;严敏;徐辉;梁伟;坎,B。郑宝陈华;郑慧;徐Y张娥等。 Palm Civet一家餐厅的SARS-CoV感染。新兴的。感染。 Dis。 2005,11,1860–1865。 [CrossRef] [PubMed]16. 胡乙; Ge,X .; WangL.-F.; Shi,Z。Bat是人类冠状病毒的起源。病毒。 J. 2015,12,221. [CrossRef] [PubMed]17. 金,Y。Cheon,S .;敏,C.-K .; Sohn,K.M .;康玉杰; Cha,Y.-J.;姜智智;韩,哈,纽约;金(G.等。在韩国爆发期间,与人类CD26亲和力降低的变异中东呼吸系统综合症冠状病毒的传播。 mBio 2016,7。[CrossRef] [PubMed]18. 奥本(I.K.) Tomczyk,S.M .; Al-Asmari,上午;班加尔(Banjar) Al-Mugti,H .;硕士Aloraini,M.S .; K.Z. Alkhaldi; E.L.; Almohammadi;阿拉木图(Brad) Gerber,S.I .;等。 2014年在吉达的中东呼吸综合征冠状病毒暴发—通往医疗机构的链接。N.Engl。 J. Med。2015,372,846–854。 [CrossRef][PubMed]19. 韩国传染病学会;大韩民国保健相关感染控制与预防协会。 2015年,大韩民国意外爆发的中东呼吸综合征冠状病毒感染。感染。化学药剂师。 2015,47,120–122。20. 硕士冠状病毒的分子生物学在病毒研究中的进展;学术出版社:马萨诸塞州,美国马萨诸塞州,2006年;第66卷,pp。 193–292。21. 麦克布赖德河;卑诗省菲尔丁严重急性呼吸系统综合症(SARS)-冠状病毒辅助蛋白在病毒发病中的作用。病毒2012,4,2902–2923。 [CrossRef] [PubMed]22. A.E. Gorbalenya;斯奈德,E.J .;斯潘,W.J.M.严重急性呼吸系统综合症冠状病毒系统发育:达成共识。 J.维罗尔2004,78,7863–7866。 [CrossRef] [PubMed]23. 科列斯尼科娃(L. W.Slenczka;布罗特,H。Klenk,H .; Becker,S.在SARS病例诊断中的电子显微镜检查。 Microsc。微肛门。 2003,9,438–439。24. G.Marsolais; Berthiaume,L .; E.DiFranco; Marois,P.通过电子显微镜快速诊断禽冠状病毒感染。能够。 J.比较中1971,35,285–288。 [考研]25. 刘德信;冯T.S .; Chong,K.K.-L .; Shukla,A .; Hilgenfeld,R. SARS-CoV和其他冠状病毒的辅助蛋白。抗病毒Res。 2014,109,97–109。 [CrossRef] [PubMed]26. Yeager,C.L .; R.A. Ashmun;英国威廉姆斯;卡德利基奥(C.B.) L.H. Shapiro;看着。;霍姆斯人氨基肽酶N是人冠状病毒229E的受体。自然1992,357,420-422。[CrossRef] [PubMed]27. 李伟;摩尔,新泽西州;瓦西里耶娃(N.隋J.黄锡基;马萨诸塞州伯恩; M. Somasundaran;沙利文(J.L.);卢祖里加(K.华盛顿州格林诺市;等。血管紧张素转化酶2是SARS冠状病毒的功能性受体。自然,2003,426,450-454。 [CrossRef] [PubMed]28. 李伟;隋J.黄,IC。库恩(J.H. Radoshitzky,S.R .;华盛顿州马拉斯科;崔H. Farzan,M.人冠状病毒NL63和严重急性呼吸系统综合症冠状病毒的S蛋白结合ACE2的重叠区域。病毒学2007,367,367–374。 [CrossRef] [PubMed]29. 吴克;李伟;彭庚; Li,F.与人类受体复合的NL63呼吸冠状病毒受体结合域的晶体结构。进程Natl。学院科学美国2009,106,19970–19974。 [CrossRef] [PubMed]30. 范多雷马伦(N. K.L. Miazgowicz; Milne-Price,S .; Bushmaker,T。罗伯逊,S。斯科特(D.)Kinne,J .;麦克莱伦(J.S.)朱建芒斯特通过其受体二肽基肽酶4限制中东呼吸综合征冠状病毒的宿主物种。J.Virol。 2014,88,9220–9232。 [CrossRef] [PubMed]31. 黄X. Dong,W .; A.Milewska; Golda,A .;齐Y;朱庆功;华盛顿州马拉斯科; R.S. Baric; A.C. Sims; Pyrc,K .;等。人类冠状病毒HKU1穗蛋白使用O-乙酰化唾液酸作为附着受体决定簇,并使用血凝素酯酶蛋白作为破坏受体的酶。 J.维罗尔2015,89,7202–7213。 [CrossRef] [PubMed]32. 北角巴特勒; Pewe,L .; K.Trandem;由人HCoV-OC43引起的Perlman,S.鼠脑炎具有广泛物种特异性的冠状病毒部分是免疫介导的。病毒学,2006,347,410–421。 [CrossRef] [PubMed]33. A.Zumla;陈建伟; E.I.Azhar;许,; Yuen,K.冠状病毒—药物发现和治疗选择。纳特Rev Disc Drug Discov。 2016,15,327–347。 [CrossRef] [PubMed]34. B.J.博世;华盛顿州的Bartelink。罗蒂尔(P.J.M.)组织蛋白酶L在功能上切割严重急性呼吸系统综合症冠状病毒I类融合蛋白,而不是毗邻融合肽。 J.维罗尔2008,82,8887-8890。 [CrossRef] [PubMed]35. 钱正; S.R. Dominguez;霍姆斯人中东呼吸综合征冠状病毒(MERS-CoV)的穗状糖蛋白在病毒进入和合胞体形成中的作用。公共科学学报2013,8,e76469。 [CrossRef] [PubMed]36. 西蒙斯,G .; D.N. Gosalia;伦纳坎普(Rennekamp)里夫斯,法学博士; Diamond,S.L .; Bates,P.组织蛋白酶L的抑制剂可防止严重的急性呼吸系统综合症冠状病毒进入。进程Natl。学院科学美国,2005年,102,11876-11881。 [CrossRef] [PubMed]37. Bertram,S。 Dijkman,R .;哈布赞(M. Heurich,A .; Gierer,S。 Glowacka,我。威尔士(K.) M. Winkler;施耐德,H。Hofmann-Winkler,H .;等。 TMPRSS2激活人类冠状病毒229E,使组织蛋白酶不依赖宿主细胞进入,并在呼吸道上皮的病毒靶细胞中表达。 J.维罗尔2013,87,6150-6160。 [CrossRef] [PubMed]38. Bertram,S .; Glowacka,我。 Müller,硕士。薰衣草,H。 Gnirss,K .;尼尔米尔,我。 Niemeyer,D .;他,Y。西蒙斯,G .; Drosten,C .;等。人气道胰蛋白酶样蛋白酶对严重急性呼吸系统综合症冠状病毒刺突蛋白的裂解和激活。 J.维罗尔2011,85,13363–13372。 [CrossRef] [PubMed]39. J.K. Millet;惠特克(G.R.)经过弗林蛋白酶介导的穗蛋白激活两步后,中东呼吸综合征冠状病毒进入宿主细胞。进程Natl。学院科学美国,2014年,111,15214–15219。 [CrossRef] [PubMed]40. 黄,IC。哥伦比亚贝利;Weyer,J.L .; Radoshitzky,S.R .;贝克尔(M.M.);蒋俊杰;黄铜,A.L .;艾哈迈德(Ahmed)池X.董琳;等。 IFITM介导的丝状病毒,SARS冠状病毒和甲型流感病毒限制的独特模式。 PLoS Pathog。 2011,7,e1001258。 [CrossRef] [PubMed]41. 李K马科斯扬(RM。郑玉男; O.戈尔菲托; Bungart,B。李敏丁,;他,Y。梁昌Lee J.C .;等。 IFITM蛋白可限制病毒膜半融合。 PLoS Pathog。 2013,9,e1003124。 [CrossRef] [PubMed]42. 罗,陈青;陈建陈K沉X. Jiang,H。SARS冠状病毒的核衣壳蛋白与人细胞异种核糖核糖核蛋白A1具有很高的结合亲和力。 FEBS Lett。 2005,579,2623–2628。 [CrossRef] [PubMed]43. 南达(S.K.) Leibowitz,J.L.线粒体乌头酸酶与小鼠的31个非翻译区结合肝炎病毒基因组。 J.维罗尔2001,75,3352–3362。 [CrossRef] [PubMed]44. Wu,C.-H .;陈平杰;是的S.-H.核仁磷酸化和RNA解旋酶DDX1的招聘使冠状病毒从不连续转录过渡到连续转录。细胞宿主微生物。 2014,16,462–472。 [CrossRef] [PubMed]45. Tan,Y.W .; Hong,W.;刘德祥冠状病毒RNA 51非翻译区与锌指的结合CCHC型和RNA结合基序1增强病毒复制和转录。核酸研究。 2012年40,5065–5077。 [CrossRef][PubMed]46. 纽曼(B.W.)吻,G。 A.H.昆定; Bhella,D .; Baksh,M.F .; Connelly,S.; Droese,B .; J.P.克劳斯; Makino,S .; Sawicki,S.G .;等。冠状病毒装配和形态中M蛋白的结构分析。J.结构。生物学2011,174,11-22。[CrossRef] [PubMed]47. 罗,吴丹;沉丙;陈K沉X.严重急性呼吸系统综合症冠状病毒膜蛋白主要通过静电吸引作用通过羧基末端与核衣壳蛋白相互作用。诠释J.生物化学。细胞生物学。 2006,38,589–599。 [CrossRef] [PubMed]48. Wong H.H .;库玛尔; Tay,F.P.L .; D.Moreau;刘德信; Bard,F.全基因组筛选揭示了冠状病毒从内体退出的含缬氨酸的蛋白质需求。 J.维罗尔2015,89,11116-11128。 [CrossRef] [PubMed]49. J.F.R. A.H. Wyllie;柯里(A.R.)凋亡:一种基本的生物现象,对组织动力学具有广泛的影响。 Br。 J. Cancer 1972,26,239–257。 [CrossRef] [PubMed]50. Boulares,A.H .;A.G. Yakovlev;伊万诺娃(Ivanova)B.A. Stoica;王庚; Iyer,S .; Smulson,M.聚(ADP-核糖)聚合酶(PARP)切割在细胞凋亡中的作用:抗Caspase 3的parp突变体增加了转染细胞的凋亡率。 J.Biol。化学1999,274,22932-22940。 [CrossRef] [PubMed]51. 濑川市;仓田Yanagihashi,Y .; T.R. Brummelkamp;F.松田; Nagata,S.半胱天冬酶介导的磷脂翻转酶裂解,引起凋亡的磷脂酰丝氨酸暴露。 Science 2014,344,1164–1168。 [CrossRef] [PubMed]52. Walczak,H.;克拉默CD95(APO-1 /Fas)和TRAIL(APO-2L)细胞凋亡系统。经验细胞水库。 2000,256,58–66。[CrossRef][PubMed]53. 班德(L.M.)摩根(Morgan)托马斯(Thomas L.R.)刘志国; Thorburn,A.衔接蛋白TRADD激活细胞核和细胞质凋亡的独特机制。细胞死亡差异。 2005,12,473–481。 [CrossRef] [PubMed]54. Stennicke,H.R .; Jürgensmeier,J.M .; Shin,H。 Q.Deveraux;沃尔夫,B.B .;杨X.周青;Ellerby,H.M .; Ellerby,L.M .;布雷德森等。前胱天蛋白酶-3是胱天蛋白酶8的主要生理指标。 J.Biol。化学1998,273,27084–27090。 [CrossRef] [PubMed]点击:查看更多医学文章 试用免费翻译功能 人类冠状病毒:病毒与宿主相互作用的综述(中) 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-22 17:00:50
分子将干细胞引导至受损的脑组织
Molecule guides stem cells to damaged brain tissue分子将干细胞引导至受损的脑组织Researchers altered a molecule that is naturally produced by the body to safely guide stem cells to damaged brain tissue.研究人员改变了人体天然产生的分子,以安全地将干细胞引导至受损的脑组织。Mice with a fatal brain disease had delayed onset of symptoms and improved survival when given the new molecule and neural stem cells.当使用新的分子和神经干细胞时,患有致命性脑病的小鼠可延迟症状发作并提高生存率。With further development, the approach may have applications for human disease.随着进一步的发展,该方法可能会应用于人类疾病。Neural stem cells maturing into brain cells called astrocytes (yellow). Sanford Burnham Prebys Medical Discovery Institute神经干细胞成熟为脑细胞,称为星形胶质细胞(黄色)。桑福德·伯纳姆·普雷比斯医学发现研究所Stem cells are part of the body’s repair system. They have the potential to replace specialized cells—such as muscle cells, blood cells, and brain cells—that have been damaged by injury or disease.干细胞是人体修复系统的一部分。它们有潜力替代因损伤或疾病而受损的特殊细胞,例如肌肉细胞,血细胞和脑细胞。The amount of repair that stem cells do in the adult body is limited. Researchers have been looking for ways to draw more stem cells to injured areas and focus their work. Harnessing the body’s healing mechanisms in this way is called regenerative medicine.干细胞在成年体内所做的修复数量有限。研究人员一直在寻找将更多的干细胞吸引到受伤部位并集中精力工作的方法。通过这种方式利用人体的康复机制,称为再生医学。To attract stem cells to injured tissues, the body naturally releases chemicals called chemokines. But chemokines also cause inflammation, and long-term inflammation in the brain and body can cause more harm than good. Therefore, it hasn’t been considered safe to use natural chemokines for regenerative medicine.为了吸引干细胞至受伤的组织,人体自然释放出称为趋化因子的化学物质。但是趋化因子也会引起炎症,大脑和身体的长期炎症可能造成弊大于利。因此,将天然趋化因子用于再生医学并不安全。A research team led by Dr. Evan Snyder from the Sanford Burnham Prebys Medical Discovery Institute tested whether they could engineer a natural chemokine to attract stem cells without causing inflammation. They altered a chemokine called CXCL12, which can draw neural stem cells to sites of injury or disease in the brain and central nervous system. CXCL12 binds to a receptor called CXCR4 on the surface of these stem cells.由桑福德·伯纳姆·普雷姆斯医学发现研究所的埃文·斯奈德(Evan Snyder)博士领导的研究小组测试了它们是否可以工程化天然趋化因子以吸引干细胞而不引起炎症。他们改变了一种称为CXCL12的趋化因子,它可以将神经干细胞吸引到大脑和中枢神经系统的损伤或疾病部位。 CXCL12与这些干细胞表面上称为CXCR4的受体结合。When activated, CXCR4 can signal different reactions within the cells. Using computational methods, the researchers optimized the part of CXCL12 that initially binds CXCR4. They then replaced the portion that triggers CXCR4 to boost inflammation. The work was funded in part by NIH’s National Institute of General Medical Sciences (NIGMS). Results were published on November 20, 2020,in Proceedings of the National Academy of Sciences.激活后,CXCR4可以发出细胞内不同反应的信号。研究人员使用计算方法优化了最初绑定CXCR4的CXCL12部分。然后,他们替换了触发CXCR4增强炎症的部分。这项工作部分由美国国立卫生研究院的国立普通医学科学研究所(NIGMS)资助。结果于2020年11月20日发布在美国国家科学院院刊上。After testing different versions of the molecule in laboratory experiments, the team focused on one called SDV1a. SDV1a strongly encouraged neural stem cells to migrate towards its signal without activating genes associated with inflammation. Instead, it activated genes involved in tissue repair.在实验室实验中测试了该分子的不同版本之后,该团队专注于开发一种名为SDV1a的分子。 SDV1a强烈鼓励神经干细胞向其信号迁移而不激活与炎症相关的基因。相反,它激活了参与组织修复的基因。The team next tested their new molecule in the brains of healthy mice. When they injected SDV1a into one side of the brain and neural stem cells into the other, the cells migrated to the side with SDV1a. Both SDV1a and the stem cells remained active in the brain for weeks. The mice showed no inflammation or other side effects from treatment.接下来,研究小组在健康小鼠的大脑中测试了他们的新分子。当他们将SDV1a注射到大脑的一侧,而将神经干细胞注射到另一侧时,这些细胞就会与SDV1a一起迁移到一侧。 SDV1a和干细胞在大脑中都保持活跃数周。小鼠从治疗中未显示出炎症或其他副作用。Finally, the researchers gave the combination of SDV1a and neural stem cells to mice with a deadly degenerative brain disorder. SDV1a was injected into the brain’s cortex, and stem cells were implanted into ventricles—brain cavities filled with cerebrospinal fluid.最后,研究人员将SDV1a和神经干细胞的组合给予患有致命性变性脑疾病的小鼠。将SDV1a注入大脑皮层,然后将干细胞植入脑室,脑室中充满了脑脊液。The stem cells spread throughout the brain and produced new neurons. Mice that received the treatment had slower onset of disease symptoms and lived longer.干细胞遍布整个大脑并产生新的神经元。接受治疗的小鼠疾病症状发作较慢,寿命更长。“The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine,” Snyder says. “Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.”斯奈德说:“指示干细胞进入人体或特定器官特定部位的能力是再生医学的圣杯。” “现在,有史以来第一次,我们可以将干细胞定向到所需位置并集中其治疗作用。”The team is now testing their approach in a mouse model of amyotrophic lateral sclerosis (ALS). Similar strategies may help improve stem cell therapy for spinal cord injury and stroke, as well as boost repair in other parts of the body.该团队现在正在肌萎缩性侧索硬化症(ALS)小鼠模型中测试他们的方法。类似的策略可能有助于改善针对脊髓损伤和中风的干细胞疗法,以及促进身体其他部位的修复。—by Sharon Reynolds—莎朗·雷诺兹(Sharon Reynolds)点击:查看更多医学文章查看更多生物学文章使用复制图片翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:nih
2021-01-19 17:45:43
干细胞疗法治疗肝病(结论)
干细胞疗法治疗肝病(上)4.3. 急性肝衰竭(ALF)如前所述,肝脏具有相当大的内源性再生能力[84]。当它遭受急性损伤时,修复机制就会生效,在许多情况下,修复机制将能够随着时间的推移恢复功能正常的存活肝[85],但是在再生过程中必须支持肝功能[86]。已经尝试了两种不同的方式:通过细胞移植或通过生物人工肝(BAL)系统。细胞移植可以为ALF或慢性慢性肝功能衰竭提供临时解决方案。 Pareja等。 [87]在急性慢性慢性肝衰竭患者中进行了肝细胞移植,取得了令人鼓舞的结果,包括改善高氨血症和脑病程度[87]。同样,永生化的人类胎儿肝细胞的移植显着提高了90%肝切除术后小鼠的存活率[88]。肝细胞与骨髓间充质干细胞的共包封不仅增加了移植[89],延长了肝细胞的生存能力,而且还增强了其在体内和体外的肝细胞特异性功能[90]。当单独移植时,骨髓来源的MSC可减轻小鼠的肝损伤并抑制肝内NK细胞活性[91,92]。此外,有证据表明,仅由MSC条件培养基产生的免疫调节就足以消除对供体肝细胞的需求[93]。 MSC衍生的外泌体也已被证明可以激活再生反应,从而在CCl4损伤的小鼠中导致增殖蛋白的更高表达[94]。与基于细胞的疗法相比,这些疗法的优势在于它们不太可能触发免疫反应。关于iPSC,Chen等。 [50]证明,在应用其三步分化方案后,iPSC衍生的HLC在严重的联合免疫缺陷小鼠模型中挽救了致命的暴发性肝衰竭[50]。BAL的另一种有希望的治疗方法是BAL,BAL是一种体外支持疗法,可以在执行活性肝细胞的生物转化和合成功能的同时去除毒素[95]。该系统旨在桥接ALF患者,使其通过再生来恢复天然肝脏或进行肝移植[96]。第一个被批准用于II / III期试验的BAL是基于猪肝细胞的装置,该装置在ALF患者的一项前瞻性,随机对照试验中进行了评估。对暴发性或亚暴发性肝功能衰竭患者进行亚组分析可提高生存率,但未达到整个研究人群生存的主要终点[97]。尽管原代猪肝细胞是BAL试验最常用的细胞来源[98],但永生化的C3A人肝母细胞瘤细胞也已在体外肝辅助装置(ELAD)中进行了试验[99],尽管尚无随机对照试验显示生存获益日期和荟萃分析结果尚无定论[100,101]。 HepaRG细胞是人类肝双能祖细胞系[102],能够在暴露于二甲基亚砜(DMSO)[103]后分化为肝细胞簇和周围的胆管上皮样细胞[103],目前正在阿姆斯特丹医疗中心进行BAL应用的评估(AMC)生物反应器,结果不一[104,105]。与无细胞BAL治疗相比,HepaRG-AMC-BAL已显示增加了ALF大鼠的存活时间[106]。为了成功地将BAL用于临床,似乎每种治疗方法至少必须可使用200 g功能性肝细胞。由于这个原因,由于原发性人类肝细胞的有限可用性以及它们在体外的短功能性和生存力,目前尚不实用。这些问题已通过使用肝细胞球体解决,该球体可保护细胞免于凋亡,并允许在治疗期间使用更大的细胞量[107]。猪肝细胞的使用也受到异种和异种症的限制,而永生细胞系的使用受到其基本细胞功能丧失的限制,例如尿素循环和CYP酶活性[108]。因此,ESC和iPSC是BAL设备的有希望的细胞来源。Soto-Gutierrez等。 [109]显示,在90%肝切除的小鼠中,用皮下植入的BAL植入ESC衍生的HLC来治疗ALF,可改善其肝功能并延长其生存期[109]。 iPSC的初步研究也表明,在生物反应器模块中培养7天后,这些细胞已分化为HLC [110]。时间限制是使用干细胞治疗ALF的主要限制之一。 ALF疗法需要快速且有效地产生大量细胞,因此按照当前方案,培养和分化自体细胞所需的时间可能是禁止的,这使得同种异体肝细胞成为更实际的选择。一旦建立了有效且快速的分化为HLC的方案,使用HLA / MHC与HLA / MHC密切匹配的iPSC库是一项需要进一步研究的选择[108]。1.2. 肝硬化慢性肝病和肝硬化的治疗重点在于修复原始肝结构的破坏,以及改善体内稳态和肝功能。虽然HLC可能对支持受损的肝功能有用,但它们似乎对抑制胶原蛋白沉积和恢复正常组织结构没有显著作用。间充质骨髓干细胞在该领域表现出最大的益处。小型I期试验报告了自体骨髓细胞输注后白蛋白水平,Child-Pugh和MELD评分有适度改善[111,112]。当与单独的粒细胞集落刺激因子动员疗法进行比较时,外周血单核细胞移植疗法通过白蛋白水平和Child-Pugh评分可明显改善肝功能[113]。另一项研究发现,在丙型肝炎患者中进行实质性自体间充质骨髓源干细胞移植后,肝脏显示出结构改善,这在活检中其胞外基质蛋白数量减少得以证明[114]。丙型肝炎患者也接受了外周自体MSC的治疗,治疗后六个月的组织病理学检查显示MELD评分有所改善,但肝纤维化或再生没有改变。无反应性丙型肝炎患者的HCV RNA水平变为阴性,表明这些细胞具有免疫调节作用[115]。在肝纤维化大鼠模型中,来自脂肪组织的MSC输注抑制了纤维化进程并略微改善了肝功能。碱性成纤维细胞生长因子治疗可增强这种治疗效果,可能是由于肝细胞生长因子表达更高[116]。已经有人提出,由于脂肪组织来源的MSC易于获取和具有免疫优势,因此它们可能优于其他细胞系:它们抑制活化的淋巴细胞增殖并抑制炎症性细胞因子的产生。它们还能够在体内分化为HLC,并通过分泌金属蛋白酶减少肝脏纤维化。 I / IIa期试验即将开始[117]。另一项研究表明,输注人脐带间充质干细胞可改善CCl4诱导的肝硬化后大鼠的胰岛素抵抗[118]。来自人类脱落乳牙的干细胞也已用于CCl4处理的小鼠中,它们成功植入并向HLC体内分化,并且肝纤维化的总面积减少。将这些HLC二次移植到另一只CCl4损伤的小鼠中可以改善这些动物的肝功能[26]。还假定其他细胞系可作为治疗肝硬化的候选药物。过去的一年。这包括肝干细胞或祖细胞的移植以及人胎儿胆树干细胞或祖细胞的移植。肝干/祖细胞显示出能够植入,增殖,分化为HLC并重新填充硫代乙酰胺诱导的纤维化大鼠肝脏的能力。活跃的纤维形成和净纤维化都减少了[119]。晚期肝硬化患者通过肝动脉输注移植人类胎儿胆树干细胞/祖细胞,导致临床和生化方面的改善保持稳定6-12个月[120]。就像MSC似乎是逆转纤维化和炎症变化的最佳候选者一样,ESC或iPSC可能是通过产生HLC来支持肝功能的极好的候选者。因此,共同移植的HLC和MSC可能在恢复肝功能和减轻炎症微环境方面都提供显着的益处[121]。还已经假设,MSC的旁分泌作用可能超出增强肝再生的范围,并有助于HLC的植入[122]。此外,Espejel等。 [123]显示,iPSC衍生的HLC不仅在小鼠中提供正常的肝功能,而且还复制了野生型肝细胞的独特增殖能力[123]。1.3. 肝癌干细胞疗法在肝癌中有两个潜在的好处。首先是在栓塞或切除后增加肝功能;第二个是利用同种异体移植中发生的移植物抗肿瘤效应。肝部分切除后肝脏具有很大的再生能力。但是,当功能肝残余量(FLR)达到25%的临界极限时,术后肝衰竭的风险会显着增加[124]。在这些情况下,已证明对几个肝段的门静脉栓塞后,自体CD133(+)骨髓源性干细胞的门静脉内给药可增加增殖率和FLR量[125,126]。同样,在手术切除肝之前进行干细胞治疗可能会显着改善肝功能参数,并减少术后并发症[127]。潜在地,细胞疗法不仅可以用于外科手术,而且可以用于放射或化学疗法来替代或修复受损的肝组织。同时,在实体瘤中,特别是在发生移植物抗宿主病的患者中,用供体淋巴细胞进行的辅助细胞治疗与更有利的肿瘤反应率相关,这表明造血干细胞的同种异体细胞移植可增强移植物-慢性移植物抗宿主病的抗肿瘤作用[128]。基于自然发生或基因工程改造的T细胞转移的过继免疫疗法是另一种新颖的癌症治疗形式,已被证明可在术后用于肝细胞癌的治疗降低复发率[129,130]。可以使用iPSC进行相同的技术,iPSC可以提供无限来源的高反应性抗原特异性细胞毒性T淋巴细胞,当转移到患者体内时,它们可以靶向,浸润和根除肿瘤[131]。干细胞,在这种情况下,是用慢病毒载体stTRAIL(可分泌形式的三聚体人类坏死因子相关的凋亡诱导配体)转导的骨髓来源的MSC,也已用于治疗射频消融后的热休克残留癌细胞在大鼠中,导致肿瘤生长受到抑制并显着提高了存活率[132]。但是,干细胞最直接的用途可能是体外筛选新的抗肿瘤药物,因为它们能够提供包含所有患者肿瘤突变的细胞靶标[133]。对于预测药物代谢和反应的个体差异也是如此,这可以通过hiPSC衍生的HLCs重新创建[134]。1.4. 肝移植肝移植是大多数终末期肝病的唯一有效疗法,但由于供体器官数量不足,其使用受到限制。针对已故可供移植的已故供肝的短缺,开发了分割肝和活体供肝移植[135]。这些技术利用了小型肝脏,移植物的大小与肝功能的程度直接相关[136],因此它们依赖于大小不匹配的移植物的快速再生来支持适当的肝功能[137]。 ]。这一点特别重要,因为尽管半尺寸移植物中肝再生增强,但四分之一尺寸移植物中肝再生受到抑制[138],并且假定移植再生的抑制是部分肝移植后小尺寸综合征的主要原因。在小鼠中[139]。因此,在整个移植后的早期阶段,治疗工作必须集中在增强移植物再生和支持肝功能上。在大鼠中经过基因修饰的MSC可以过量表达肝细胞生长因子,从而降低了小规模移植后的肝细胞损伤标志物水平,促进了肝脏重量的恢复并保留了肝脏的结构[140,141]。除了改善肝脏再生,在这些小型肝移植动物模型中,MSCs还可以延长生存期[142]。在尺寸缩小的大鼠肝移植中,通过限制肝脏损伤生物标志物的释放,抑制肝窦内皮细胞和肝细胞死亡以及刺激细胞增殖,MSC条件培养基输注可显着提高生存率[143]。由于在缺血再灌注损伤中募集T细胞非常重要,因此MSC的免疫调节特性及其抑制T细胞的潜力在肝移植中可能特别有用[144]。将来,生物工程器官也可以解决供体肝脏短缺的问题[145],并且目前正在研究干细胞作为肝细胞的替代细胞来源[146]。天然的细胞外基质成分已被成功地用于诱导胚胎干细胞分化为HLC [147]。 iPSC在该部门显示出希望,但在就哪种细胞系将是全器官生物工程的安全和有效候选者达成共识之前,有必要更好地了解干细胞及其分化过程。[148] 。器官创造的另一种方法是在体外产生肝芽hiPSC。Takebe等人成功地完成了这一壮举。[149],然后进行了肠系膜手术将这些肝芽移植到更昔洛韦引起的肝功能衰竭的免疫缺陷小鼠中。肝芽不仅显示出蛋白质生产和人类特异性药物代谢,而且它们的移植挽救了药物诱导的致命性肝衰竭模型[149]。尽管用这种技术不可能进行原位肝移植,并且到目前为止,这些肝模型尚缺乏外部胆管结构,但这一成就是朝着产生新器官移植的第一步[150]。2. 结论干细胞疗法和再生医学将来可能会为可用于移植的肝脏短缺提供解决方案。已经测试了不同细胞系作为各种肝病的潜在治疗来源。在这些患者中,细胞移植,器官工程技术和BAL系统可为肝移植提供替代方案,或至少降低候补名单死亡率[151]。此外,随着近十年来iPSC的发展,道德和免疫问题已得到部分规避,这可能会加速该领域的研究。然而,在许多这些细胞疗法准备用于临床之前,必须解决许多重要问题。首先,必须在不使用病毒载体或不改变细胞周期调节剂的情况下实现向成熟肝细胞的有效分化,以避免致瘤性问题并更好地理解所涉及的细胞信号传导过程[152,153]。这必须伴随一种可靠的方法,用于快速,大规模生产用于移植的高质量细胞。最后,在临床应用之前,这些技术应在大型动物模型中进行测试并证明是成功的,因为它们比人类更能预测人类的反应。啮齿动物[154]。 作者贡献:克拉拉·尼古拉斯(Clara Nicolas)为手稿的撰写做出了贡献。王玉佳为手稿的撰写做出了贡献并准备了人物。詹妮弗·吕布·惠勒(Jennifer Luebke-Wheeler)监督和编辑手稿。斯科特·尼伯格(Scott L. Nyberg)为稿件做出了贡献,并对其进行了监督和编辑。利益冲突:作者声明没有利益冲突。 点击:查看更多医学文章 查看更多生物学文章参考文献(展示部分文献内容)1. Taub,R.肝再生:从神话到机制。纳特牧师细胞生物学。 2004,5,836–847。 [CrossRef] [PubMed]2. 坎茨(T.)曼斯,硕士; Ott,M.干细胞在肝脏再生和治疗中的作用。细胞组织研究。 2008,331,271-282。 [CrossRef] [PubMed]3. Riehle,K.J .;丹,Y.Y .;坎贝尔(J.S.);福斯托,新。肝脏再生的新概念。J.胃肠。肝素2011,26(Suppl.1),S203–S212。 [CrossRef] [PubMed]4. G.F.拉什;戈尔斯基(J.R.);纹波,硕士J·索温斯基; Bugelski,P .; Hewitt,W.R.在分离的肝细胞中有机氢过氧化物诱导的脂质过氧化和细胞死亡。毒药。应用Pharmacol。 1985,78,473–483。 [CrossRef]5. Mitaka,T。原代肝细胞培养的当前状态。诠释J. Exp。 Pathol。 1998,79,393–409。 [CrossRef] [PubMed]6. Boess,F .;坎伯,M。罗默,S。加瑟(R.穆勒D.Albertini,S .; Suter,L.与大鼠体内肝基因表达相比,在两种肝细胞系,培养的原代肝细胞和肝切片中的基因表达:对体外遗传学组学的可能影响。毒药。科学2003,73,386–402。 [CrossRef] [PubMed]7. 劳埃德,T.D.;奥尔,S。斯科特(Skett);贝里(D.P.)丹尼森肝细胞的冷冻保存:目前的银行存款方法综述。细胞组织库。 2003,4,3-15。 [CrossRef] [PubMed]8. R.P. Evarts; Nagy,P.; E.马斯登; Thorgeirsson,S.S.前体—大鼠肝脏卵圆形细胞和肝细胞之间存在产物关系。致癌作用1987,8,1737–1740。 [CrossRef] [PubMed]9. 拉萨罗(C.A.); Rhim,J.A .;山田,Y。 Fausto,N.从培养中的卵形细胞前体生成肝细胞。癌症研究。 1998,58,5514–5522。 [考研]10. 久保田Reid,L.M.克隆形成的成肝细胞是肝细胞和胆道谱系的常见前体,缺乏经典的主要组织相容性复合物I类抗原。进程Natl。学院科学美国,2000,97,12132-12137。 [CrossRef] [PubMed]11. N.福斯托;坎贝尔(J.S.)肝细胞和卵圆形细胞在肝脏再生和再填充中的作用。机甲开发人员2003,120,117–130。 [CrossRef]12. Oertel,M。 Rosencrantz,R .;陈永庆;索塔(P.N.) J.S. Sandhu;马里兰州达贝娃;帕基亚(美国);马萨诸塞州阿德尔森; Dougherty,J.P .; Shafritz,D.A.通过慢病毒载体离体转导的胎儿成肝细胞和成年肝细胞在大鼠肝脏中的繁殖。肝病学,2003,37,994-1005。 [CrossRef] [PubMed]13. 哈里达斯,D。袁Q;贝克尔博士坎茨(T.)艾肯(Iken) Rothe,M.; N.Narain;博克,M。 M.Nörder;北罗格朗;等。在白蛋白启动子增强型尿激酶型纤溶酶原激活剂小鼠中,成年肝细胞,胎儿肝祖细胞和胚胎干细胞衍生的肝细胞的繁殖效率。上午。 J.Pathol。 2009,175,1483–1492。 [CrossRef] [PubMed]14. Mahieu-Caputo,D .; J.E. Allain; J.库仑,A .;德尔加多(J.P.); M.安德烈奥莱蒂(Andreoletti)Mainot,S .; Frydman,R .; Leboulch,P .; Di Santo,J.P.;等。冷冻保存的早期人类胎儿成肝细胞使无胸腺小鼠肝脏重新繁殖。哼。基因治疗2004,15,1219–1228。 [CrossRef] [PubMed]15. 新罕布什尔州海纳;劳恩(L.Yaswen,P .;布鲁克斯,M。Fausto,N.通过离心淘析从正常和肿瘤前肝脏分离的卵圆细胞,实质细胞和胆汁细胞的同工酶谱。癌症研究。 1984,44,332–338。 [考研]16. Schmelzer,E。E. Wauthier;Reid,L.M.多能人类肝祖细胞的表型。干细胞2006,24,1852–1858。 [CrossRef][PubMed]17. 徐永庆;刘志成成年骨髓干细胞在肝病和分娩方法中的治疗潜力。 Stem Cell Rev. 2008,4,101-112。 [CrossRef] [PubMed]18. Bianco,P.;鲍比(Robyy)西蒙斯(P.J.)间充质干细胞:回顾历史,概念和分析方法。细胞干细胞,2008年,第2卷,第313-319页。 [CrossRef] [PubMed]19. 丁,; W.C. Shyu;林淑珍间充质干细胞。细胞移植。 2011,20,5-14。 [CrossRef] [PubMed]20. Cho,K.A.;Ju,S.Y.;Cho,S.J.;Jung,Y.J.;Woo,S.Y.;Seoh,J.Y.;Han,H.S.;Ryu,K.H.与骨髓的其他亚群相比,间充质干细胞显示出损伤肝组织再生的最高潜力。细胞生物学。内景,2009,33772–777。[交叉引用][PubMed]21. 石敏刘忠武;王FS间充质干细胞的免疫调节特性和治疗应用。临床经验免疫2011,164,1–8。 [CrossRef] [PubMed]22. Lee O.K .;郭o;陈威Lee K.D.;谢小龙;陈子辉从脐带血中分离多能间充质干细胞。 Blood 2004,103,1669-1675年。 [CrossRef] [PubMed]23. Kestendjieva,S .;久尔基耶夫Tsvetkova,G .; Mehandjiev,T。 Dimitrov,A.;尼科洛夫(A. Kyurchiev,S.从人脐带分离的间充质干细胞的特征。细胞生物学。诠释2008,32,724–732。 [CrossRef] [PubMed]24. 日元B.L.;黄辉Chien C.C .;崔H Ko,B.S .;姚明;顺昌;日元M.L .;李,MC。陈元成从人足月胎盘中分离专能细胞。干细胞,2005,23,3-9。 [CrossRef] 25. DiCampli,C .;皮斯卡利亚(A.C.);皮埃雷利,L .; Rutella,S .; Bonanno,G .; Alison,M.R .; Mariotti,A .; Fecchio,F.M .;内斯托拉,M .; Monego,G .;等。在毒性肝损伤的小鼠模型中的人脐带干细胞抢救疗法。挖掘肝脏疾病。 2004,36,603–613。 [CrossRef] [PubMed]26. 堪萨斯州Zaret; Grompe,M。肝和胰腺细胞的产生和再生。科学2008,322,1490-1494。 [CrossRef] [PubMed]27. 迈凯轮(A. McLaren),干细胞研究的伦理和社会考虑。 Nature 2001,414,129–131。 [CrossRef] [PubMed]28. Swijnenburg,R.J .; Schrepfer,S。 Govaert,J.A .;曹菲;兰索霍夫(K.谢赫(A.Y.);哈达德A.J. Connolly;戴维斯,医学硕士;罗宾斯,哥伦比亚特区;等。免疫抑制疗法可减轻人类胚胎干细胞异种移植的免疫排斥反应。进程Natl。学院科学美国,2008,105,1291-12996。 [CrossRef][PubMed]29. 托洛萨湖卡伦,J。汉农,Z。安东尼,M。洛佩兹,S。伯克斯(D.)卡斯特尔,合资; Weber,答:新泽西州Gomez-Lechon; Dubart-Kupperschmitt,A。hESC衍生的肝细胞移植可保护小鼠免受肝损伤。干细胞研究。那个2015,6,246. [CrossRef] [PubMed]30. 扎卡里亚斯(D.G.) T.J.尼尔森; P.S.Mueller;胡克(Cook)诱导多能性的科学和伦理学:胚胎干细胞将变成什么?梅奥·克林。进程2011,86,634–640。 [CrossRef] [PubMed]31. 高桥Yamanaka,S.通过确定的因子诱导小鼠胚胎和成年成纤维细胞培养物中的多能干细胞。 Cell 2006,126,663–676。 [CrossRef] [PubMed]32. Vallier,L.将诱导的多能干细胞进行测试。纳特生物技术。 2015,33,1145–1146。 [CrossRef][考研]33. 马里兰州马切托; Yeo,G.W.; O.Kainohana;马萨诸塞州马尔萨拉;盖奇(F.H.); A.R. Muotri人类诱导的多能干细胞的转录特征和记忆保留。公共科学杂志2009,4,e7076。 [CrossRef] [PubMed]34. 金,K。土井,A。温宝Ng,K .;赵荣; Cahan,P .;金,J。 M.J. Aryee;埃里希(美国)Yabuuchi,A .;等。诱导多能干细胞中的表观遗传记忆。自然,2010,467,285-290。[CrossRef] [PubMed]35. 刘华;是的,Z。金,Y。Sharkis,S.;张永义从原代肝细胞生成内胚层衍生的人诱导多能干细胞。 Hepatology 2010,51,1810–1819。 [CrossRef] [PubMed]36. K.Miura;冈田(Yokada)葵,T.;冈田高桥冲田中川,M.小柳市田边市大沼(M.等。诱导多能干细胞系安全性的变化。纳特生物技术。 2009,27,743–745。 [CrossRef] [PubMed]37. 崔,S.M .;金,Y。刘华; Chaudhari,体育;是的,Z。张永义来自患者特异性诱导的多能干细胞的肝细胞的肝移植潜力。细胞周期2011,10,2423-2427。 [CrossRef] [PubMed]38. 西野,K .;丰田章男;M.山崎井上;Y.河川濑; E. Chikazawa;阪口; H. Akutsu; Umezawa,A.人类诱导的多能干细胞随时间推移的DNA甲基化动力学。 PLoS基因。 2011,7,e1002085。 [CrossRef] [PubMed]39. K.A. Hartjes;李旭Martinez-Fernandez,A .; Roemmich,A.J .; B.T.拉森; Terzic,A.;尼尔森(T.J.)通过多能性相关转录筛选进行的选择可将体细胞来源对iPSC分化倾向的影响降至最低。干细胞2014,32,2350–2359。 [CrossRef] [PubMed]40. O.Bar-Nur;拉斯(Russ) Efrat,S。 Benvenisty,N.源自人胰岛β细胞的诱导性多能干细胞中的表观遗传记忆和优先谱系特异性分化。细胞干细胞2011,9,17–23。 [CrossRef] [PubMed]41. M.Stadtfeld长谷,M.于蒂卡尔(J.威尔,G .;Hochedlinger,K.诱导产生的多能干细胞,没有病毒整合。科学2008,322,945–949。[CrossRef] [PubMed]免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-14 19:54:15
干细胞疗法治疗肝病
克拉拉·尼古拉斯(ClaraNicolas)1,*,王玉佳(Jiang Wang)1,珍妮弗·吕布·惠勒(Jennifer Luebke-Wheeler)1和斯科特·尼伯格(Scott L.Nyberg)1,2收到:2015年11月25日;接受:2015年12月31日;发布时间:2016年1月6日学术编辑:邓文斌1 William J. von Liebig移植和临床再生中心,梅奥诊所,罗切斯特,MN 55905,美国; wang.yujia@mayo.edu(Y.W.); luebke-wheeler.jennifer@mayo.edu(J.L.-W.); nyberg.scott@mayo.edu(S.L.N.)2 美国罗切斯特市梅奥诊所外科科,美国明尼苏达州55905 摘要:细胞疗法是几种肝脏疾病的新兴治疗形式,但受到供体肝脏可用性的限制。干细胞有望替代原代肝细胞。我们对文献进行了详尽的回顾,重点是涉及使用干细胞治疗肝病的最新研究。干细胞可以从多种来源中收获,或者可以从体细胞中产生以产生诱导性多能干细胞(iPSC)。实验上已经使用了不同的细胞系来支持肝功能,并治疗遗传性代谢异常,急性肝衰竭,肝硬化,肝癌和小型肝移植。基于细胞的疗法可能涉及基因疗法,细胞移植,生物人工肝装置或生物工程器官。该领域的研究仍然非常活跃。将来,干细胞疗法可被用作肝移植或内源性肝再生的桥梁,但是必须开发有效的分化和生产方案,并且必须证明其安全性,然后才能将其应用于临床实践。关键词:干细胞;肝病;诱导多能干细胞;基因校正细胞移植生物人工肝再生医学细胞疗法1. 介绍迄今为止,肝移植是治疗药物难以治疗的多种肝病的唯一有效方法。不幸的是,对供体器官的需求大大超过了其供应,因此有必要替代全器官肝移植进行治疗。针对可移植肝脏的短缺,已经出现了细胞疗法。已经评估了离体肝脏支持疗法和体内细胞移植,并显示了治疗肝衰竭的潜力。肝脏由于其内源性的再生和修复能力强,因此特别适合这种疗法[1-3]。分离的原代肝细胞是体内和离体细胞疗法中要测试的第一类细胞,但是它们的使用受到许多尚待克服的技术难题的限制。肝细胞在体外培养中不能长期存活[4],因为(1)体外生长能力极低[5],(2)肝特异性基因的表达在体外迅速下降[6]和(3)易冻性融化的破坏使冷冻保存变得复杂[7]。然而,使用它们的主要限制是由于供体肝脏的缺乏,无法分离出高质量的原代肝细胞,因此无法满足临床对肝细胞的需求。随着再生医学的到来,肝细胞治疗的重点已经稍微转移到干细胞的治疗潜力上,这是一种在组织损伤后恢复正常结构和功能的手段。干细胞的分化和自我更新能力使其成为无数肝细胞生成的合理来源。因此,干细胞疗法可以替代全器官肝移植在治疗肝脏疾病方面具有广阔的前景。几种类型的干细胞已被证明适用于肝细胞置换。在这篇综述中,我们探讨了每种细胞系的优势和局限性,以及可能从干细胞疗法中受益的各种肝脏疾病。 2. 干细胞来源用于肝病治疗2.1. 肝干细胞干细胞可以从成年或胎儿肝脏获得。成人肝干细胞(也称为卵圆细胞)和胎儿肝干细胞(称为成肝细胞)都是双能的,因此能够分化为肝细胞或胆管细胞[8-10]。已经证明,当肝细胞的复制能力受损时,卵形细胞会在肝再生中发挥作用[11],而在动物模型中,已通过实验将成肝细胞用于肝再生[12,13]。人成肝细胞也已被培养,并已显示出移植到免疫缺陷小鼠体内后在体内的植入和分化[14]。使用肝源性干细胞的主要限制是正常肝中它们的数量非常低,卵圆形细胞仅占成年肝的0.3%至0.7%[15],而成肝细胞仅占成年肝的不到0.1%。胎儿肝脏肿块[16]。这使得它们的隔离和扩展具有挑战性,从而限制了其在小规模使用中的应用。2.2. 骨髓干细胞骨髓干细胞包括造血干细胞和间充质干细胞(MSC)[17]。 MSC是在骨髓和其他成年器官和组织(例如脂肪组织)中发现的多能祖细胞,它们很容易获得,并且可以在培养物中快速扩增[18,19]。在这两个细胞群中,已建议MSC具有更高的肝再生潜力[20]。此外,它们比造血干细胞具有另一个优势:它们具有免疫调节或免疫抑制特性,可下调T细胞,B细胞和NK细胞的功能[21]。在临床上,这可以转化为肝移植后诱导耐受的能力。2.3. 附件干细胞附件干细胞是容易获得的细胞,其衍生自人胎盘组织,脐带和脐带血以及羊水。它们是多能的,因此与成体干细胞相比,它们具有更高的分化潜能,并且具有更高的增殖率[22-24]。附件干细胞还提供了另一个优势:尚未描述它们可在人类中形成畸胎瘤或畸胎瘤。在一项研究中,急性毒性肝损伤后向非肥胖型严重合并免疫缺陷小鼠腹膜内施用人脐带血干细胞显示出快速的肝移植,分化为肝细胞,改善了肝的再生并降低了死亡率[25]。2.4. 胚胎干细胞(ESC)ESC是全能细胞,可以分化为类肝细胞,具有损伤后能够在肝脏中定植的能力,并且具有与成熟肝细胞相似的功能[26]。但是,使用ESC有两个主要限制。首先,它们的采购涉及胚胎的破坏这一事实引起了道德上的担忧,这些担忧抑制了ESC研究的进展[27]。其次,ESC移植的供体和受体之间存在免疫不相容的问题[28]。尽管如此,ESC的研究仍在进行中,最近的一项研究揭示了一种分化为新生儿肝细胞的有效方案,该新生儿肝细胞能够在体内无肿瘤诱导地繁殖肝脏,并在对乙酰氨基酚引起的毒性小鼠中拯救肝脏功能[29] 2.5. 诱导多能干细胞(iPSC)iPSC具有与ESC相似的特性,包括多能性和自我更新,但避开了使用此类细胞固有的主要问题。 iPSCs是由体细胞在体外产生的,无需使用胚胎组织或卵母细胞,从而避免了伦理争议[30]。此外,它们提供了自体使用的可能性,解决了异体排斥的问题。 2006年首次描述的iPSC的使用已迅速发展为胚胎干细胞的有前途的替代方法,但在考虑将其应用于临床之前,必须解决几个问题,并且必须确定它们与ESC的等效性[ 32]。图1显示了iPSC和ESC之间的生产差异。 图1.胚胎干细胞和诱导性多能干细胞的产生。 iPSC可能来自多种细胞来源,并且有人提出,它们的起源可能在它们的分化能力中发挥作用[33,34]。尽管成纤维细胞是人类iPSC(hiPSC)的最常见来源,但这些细胞也已成功地从多种其他体细胞类型(包括原代肝细胞)中重新编程[35]。然而,已经有人提出,与其他来源的细胞相比,肝细胞来源的细胞系对畸胎瘤形成的倾向可能更高。有证据表明,由于hiPSC系的表观遗传记忆力会随着时间的流逝而丢失,因此可以从多种来源的iPSC成功诱导肝分化[37]。实际上,研究表明,可预测的iPSC分化与体细胞来源无关,而是在很大程度上取决于所使用的重编程策略[39]。其他作者建议,相反地,iPSCs具有偏斜的分化潜能,这源于它们的谱系特异性表观遗传记忆,使它们易于分化为起源的细胞类型[40]。需要进一步的研究来阐明这一点,并找到最合适的细胞来源来产生能分化为肝细胞的hiPSC。还存在对iPSC进行重编程的不同方法,有关iPSC生成的第一份报告是由逆转录病毒载体组成的,用于诱导多能性。该方法受到病毒转基因自发再激活及其整合入宿主基因组的可能性的限制,这转化为形成肿瘤的风险[41]。但是,在过去两年中,成功解决了iPSC生成问题。例如,hiPSC现在可以由不整合到靶细胞基因组中的载体产生[42,43],甚至可以由小分子化合物诱导[44,45]。迄今为止,尚未从iPSC或ESC获得体外完全成熟的肝细胞。获得的称为肝细胞样细胞(HLCs)的细胞具有原代肝细胞的大部分特性,但功能上并不成熟,如其较低的白蛋白生成水平,CYP活性和尿素循环活性以及通过它们持续表达高水平的甲胎蛋白[46]。已经开发出许多分化方案[47-49],并且通过三步方案将分化时间从平均超过20天减少到12天,从而提高了其效率[50,51]。 Asgari等。 [52]将hiPSC衍生的HLC表征为表达肝细胞特异性标志物,糖原和脂质存储活性,白蛋白分泌和CYP450代谢活性,并且在移植后,这些细胞具有改善CCl4损伤的小鼠肝脏功能状态的能力[ 52]。最新研究集中在将成纤维细胞直接谱系重编程为人诱导的肝细胞,已产生具有药物代谢功能的功能性和可扩展性细胞[53,54]。尽管如此,分化方案必须在临床应用可行之前进行优化,因为已经表明完全分化的细胞移植后具有较低的畸胎瘤形成风险[55]。必须消除残留的未分化细胞,不仅避免畸胎瘤的形成,而且避免对多能性抗原产生免疫反应的可能性[56]。此外,分化后必须仔细研究目的细胞类型的免疫学特性[57,58]。必须克服的另一个障碍是缺乏高效,大规模的hiPSC生产系统,因为单层静态组织培养物将无法维持临床应用所需的快速细胞扩增。在这方面已经取得了进展,iPSC培养物以3D悬浮液的形式聚集[59]。 3D培养的优势是可以高密度培养hiPSC [60],同时可以增加HLC向成年表型的功能成熟度,并提高其功能寿命[61]。尽管有这些挫折,但仍取得了令人鼓舞的结果。朱等。 [62]能够通过缩短重编程规程以避免多能性,通过诱导多能祖细胞(iMPC)而不是iPSC来区分人成纤维细胞中的肝细胞[62]。然后,他们在人肝衰竭的免疫缺陷小鼠模型中实现了肝脏再填充,其肝细胞功能水平与人成年原代肝细胞相似。此外,通过阻止细胞进入多能状态,很可能防止了肿瘤的形成。已经发现,不涉及基因组整合的重编程方法以及通过在重编程过程中去除c-Myc均可降低iPSCs的致瘤性和免疫原性[64]。关于iPSCs的致癌潜力,最近在恒河猴中进行了自体畸胎瘤形成试验,得出的结论是,虽然未分化的自体iPSC形成畸胎瘤,但iPSC衍生的祖细胞在体内产生功能组织而没有肿瘤迹象形成[65]。此外,未分化细胞形成的畸胎瘤的生长效率比同等啮齿动物模型低至少20倍,这可能是由于完整的免疫和炎症系统的存在所致。它与人类生理学的相似性使这种非人类灵长类动物模型对于基于iPSC的疗法的研究非常有价值。 iPS细胞进行了研究,已经在许多不同的肝脏疾病的背景下对iPSC进行了研究,但是iPSC的最直接用途可能是人类肝脏疾病的建模和体外药物测试[66,67]。3. 干细胞用于肝病治疗的技术干细胞向HLC的分化可以在使用前在体外实现,也可以在细胞移植后在体内实现。体外培养和分化正在广泛研究中,并且仍在创造新的,更有效的方案。但是,干细胞在注射后也具有体内分化为HLC的能力。不同细胞系都是如此。在一项研究中,静脉注射纯化的造血干细胞显示出在富马酰乙酰乙酸水解酶(FAH)基因敲除小鼠体内向HLC分化,从而恢复了肝功能[68]。 FAH´ {´小鼠是I型酪氨酸血症的动物模型,在研究代谢性肝病的再生疗法方面具有巨大潜力。在这些动物中,非FAH缺陷型野生型细胞由于具有选择性优势,可以在移植后大量繁殖肝脏。当FAH基因敲除与免疫缺陷等位基因结合时,人类细胞可用于重新填充肝脏,形成嵌合器官[69]。为了提供更具临床意义的动物模型,还创建了FAH´ {'猪,可用于测试不同细胞疗法的功效[70]。此外,如果可以在这些动物中充分实现肝脏人源化,则可以将它们用作活体生物反应器,以生产大量功能性人肝细胞。图2显示了FAH基因敲除猪的创建及其作为原代人肝细胞培养箱的可能用途。 图2.用人类肝细胞填充FAH缺陷型猪肝。尼替农(NTBC)用于治疗FAH缺乏的动物,同时发生肝细胞移植和增殖。 其他细胞系,例如小鼠ESC和人类骨髓来源的MSC,也已被证明可以在体内分化为HLC [71,72]。尽管如此,在考虑临床应用之前,必须更深入地研究体外和体内信号模式,分化机制和最佳增殖条件,尤其是因为数据表明成熟肝细胞的移植和再繁殖能力要比干细胞高。 [73]。4. 干细胞在肝脏疾病中的潜在应用4.1. 遗传性肝病遗传性肝病中的细胞疗法不仅可以充当肝移植的桥梁,而且还为长期纠正代谢缺乏症提供了机会[74]。原代肝细胞移植已用于治疗人类的多种疾病,包括家族性高胆固醇血症,1型Crigler-Najjar综合征和尿素循环缺陷等[75]。同时患有Crigler-Najjar 1型和尿素循环缺陷的患者正在接受I期临床试验,以治疗由正常成人肝脏组织产生的异源人类成人肝脏祖细胞悬浮液[76]。但是,如前所述,供体器官不足,无法从中分离出高质量的肝细胞,必须考虑同种异体排斥的可能性。自体移植可以避免同种异体排斥,但是只能通过肝切除获得足够数量的自体原代肝细胞。可以通过使用iPSC来避免此问题。随着干细胞技术的发展,尤其是iPSC的发展,遗传性肝病的治疗可以进一步向前:通过将基因校正技术与自体细胞移植相结合,可以创建针对患者的治疗方法[77,78]。无病的自体hiPSC首先通过离体基因治疗产生[79],然后经过基因校正的hiPSC分化并用于移植。图3显示了如何将hiPSC与基因校正和分化技术结合起来以生产自体,无病的肝细胞进行移植。 图3. iPSC的基因校正,用于产生患者特异性无病肝细胞。 从理论上讲,这种方法可以应用于任何已知潜在突变的遗传性疾病,并且已经在造血疾病的动物模型上进行了测试,结果令人鼓舞[80]。在hiPSC中,α1-抗胰蛋白酶的缺陷也得到了基因纠正,从而在在小鼠的体内和体内分化的HLC中恢复了蛋白质的功能,[81]。家族性高胆固醇血症患者的hiPSC也已成功产生了经过疾病校正的HLC [82]。根据这些研究,自体基因校正的hiPSC衍生的肝细胞的移植显示出治疗遗传性肝病的希望。可以在4到5个月内获得针对患者的无病hiPSC系列产品[83]。另外,hiPSC可以用于遗传性代谢疾病的建模和研究[51]。4.2. 急性肝衰竭(ALF)如前所述,肝脏具有相当大的内源性再生能力[84]。当它遭受急性损伤时,修复机制就会生效,在许多情况下,修复机制将能够随着时间的推移恢复功能正常的存活肝[85],但是在再生过程中必须支持肝功能[86]。已经尝试了两种不同的方式:通过细胞移植或通过生物人工肝(BAL)系统。细胞移植可以为ALF或慢性慢性肝功能衰竭提供临时解决方案。 Pareja等。 [87]在急性慢性慢性肝衰竭患者中进行了肝细胞移植,取得了令人鼓舞的结果,包括改善高氨血症和脑病程度[87]。同样,永生化的人类胎儿肝细胞的移植显着提高了90%肝切除术后小鼠的存活率[88]。肝细胞与骨髓间充质干细胞的共包封不仅增加了移植[89],延长了肝细胞的生存能力,而且还增强了其在体内和体外的肝细胞特异性功能[90]。当单独移植时,骨髓来源的MSC可减轻小鼠的肝损伤并抑制肝内NK细胞活性[91,92]。此外,有证据表明,仅由MSC条件培养基产生的免疫调节就足以消除对供体肝细胞的需求[93]。 MSC衍生的外泌体也已被证明可以激活再生反应,从而在CCl4损伤的小鼠中导致增殖蛋白的更高表达[94]。与基于细胞的疗法相比,这些疗法的优势在于它们不太可能触发免疫反应。关于iPSC,Chen等。 [50]证明,在应用其三步分化方案后,iPSC衍生的HLC在严重的联合免疫缺陷小鼠模型中挽救了致命的暴发性肝衰竭[50]。BAL的另一种有希望的治疗方法是BAL,BAL是一种体外支持疗法,可以在执行活性肝细胞的生物转化和合成功能的同时去除毒素[95]。该系统旨在桥接ALF患者,使其通过再生来恢复天然肝脏或进行肝移植[96]。第一个被批准用于II / III期试验的BAL是基于猪肝细胞的装置,该装置在ALF患者的一项前瞻性,随机对照试验中进行了评估。对暴发性或亚暴发性肝功能衰竭患者进行亚组分析可提高生存率,但未达到整个研究人群生存的主要终点[97]。尽管原代猪肝细胞是BAL试验最常用的细胞来源[98],但永生化的C3A人肝母细胞瘤细胞也已在体外肝辅助装置(ELAD)中进行了试验[99],尽管尚无随机对照试验显示生存获益日期和荟萃分析结果尚无定论[100,101]。 HepaRG细胞是人类肝双能祖细胞系[102],能够在暴露于二甲基亚砜(DMSO)[103]后分化为肝细胞簇和周围的胆管上皮样细胞[103],目前正在阿姆斯特丹医疗中心进行BAL应用的评估(AMC)生物反应器,结果不一[104,105]。与无细胞BAL治疗相比,HepaRG-AMC-BAL已显示增加了ALF大鼠的存活时间[106]。为了成功地将BAL用于临床,似乎每种治疗方法至少必须可使用200 g功能性肝细胞。由于这个原因,由于原发性人类肝细胞的可用性有限以及它们在体外的短功能性和生存力,目前尚不实用。这些问题已通过使用肝细胞球体解决,该球体可保护细胞免于凋亡,并允许在治疗期间使用更大的细胞量[ 107 ]。猪肝细胞的使用也受到异种性和xenozoonosis的限制,而永生化细胞系的使用受到其基本细胞功能的丧失(如尿素循环和CYP酶活性)的限制[ 108]。因此,ESC和iPSC有望成为BAL设备的细胞来源。Soto-Gutierrez等。[ 109 ]显示,在90%肝切除的小鼠中,用皮下植入的BAL植入ESC衍生的HLC来治疗ALF可改善其肝功能,并延长其生存期[ 109 ]。iPSC的初步研究还表明,在生物反应器模块中培养7天后,这些细胞分化为HLC [ 110 ]。 时间限制是使用干细胞治疗ALF的主要限制之一。ALF疗法需要快速且有效地产生大量细胞,因此按照当前方案,培养和分化自体细胞所需的时间可能是禁止的,这使得同种异体肝细胞成为更实际的选择。一旦建立了有效且快速的分化为HLC的方案,使用HLA / MHC与HLA / MHC密切匹配的iPSC库是一项需要进一步研究的选择[ 108 ]。 点击:查看干细胞疗法治疗肝病(结论) 查看更多医学类文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-14 19:17:26
褪黑素能否成为治疗COVID-19潜在“银弹”?(下
褪黑激素能否成为治疗COVID-19患者的潜在“银弹”?(上)6. 褪黑激素和神经保护在患有严重COVID-19疾病的患者中,已记录到神经系统并发症,包括失眠,中风,瘫痪,颅神经功能缺损,脑病,del妄,脑膜炎和癫痫发作(参见,例如[64,96])。神经系统异常是否由SARS-CoV-2本身,由其触发的夸大的细胞因子反应和/或由脑血管中血块形成的增加引起,尚待确定。在有神经系统症状的患者中,脑脊液自身抗体增多[97],脑白质改变[98,99]以及发生心理和精神病学后果[100]。在最近的研究中(截至目前(2020年11月23日)作为预印本发布),认知测试数据来自84,285名英国智能测试参与者,他们完成了有关可疑和生物学确认的COVID-19感染的问卷调查[101]。在控制了年龄,性别,教育水平,收入,种族,种族和先前存在的医学疾病之后,那些已经康复的人(包括不再报告症状的人)表现出明显的认知缺陷。在该数据集中,观察到的赤字规模相当于20至70岁之间的全球绩效平均10年下降。作为比较,这组作者指出,这一赤字大于平均512名表示中风的人和1016名患有学习障碍的人的平均赤字[101]。因此,“脑雾”,即混乱,健忘,无法集中注意力,疲倦和智力低下[102,103]可能因此成为COVID-19感染的新兴主要后遗症(图1)。在这种情况下,褪黑激素的神经保护特性值得考虑[104]。对在认知能力下降早期使用褪黑激素的已发表数据进行的分析一致显示,退休前每晚服用褪黑激素可改善睡眠质量和认知功能疾病[105]。褪黑激素治疗的患者表现出明显好转在各种神经心理学测试中的表现。他们在贝克抑郁量表中的得分也较低,同时睡眠和清醒的质量得到改善[106]。图1.褪黑激素是COVID 19大流行中潜在的“银子弹”,如大脑所示。褪黑素可能通过干扰SARS-CoV-2 /血管紧张素转换酶2的缔合而具有抗病毒活性。褪黑激素作为一种抗氧化剂,抗炎和免疫调节化合物,会损害SARS-CoV-2感染的后果。褪黑激素是一种有效的生长期药,可逆转重症监护病房患者的昼夜节律紊乱和del妄。褪黑激素可以预防COVID-19感染患者的神经后遗症,例如“脑雾”和认知功能减退。褪黑激素可以作为增强抗SARS-CoV-2疫苗功效的佐剂。 BBB:血脑屏障。视网膜细胞特别容易发生神经变性。例如,在帕金森氏病患者中,有较薄的筛板(视网膜视神经轴突行进的部位)[107]。最近的一项研究[108]探索了褪黑素治疗对认知障碍最小的患者的筛板厚度的影响。 6个月后,用0.15mg/kg褪黑素可显着增加筛板的厚度和海马体积,与未经治疗的组相比,CSF的tau含量降低,并且迷你智力得分提高。总的来说,这些数据支持褪黑激素减少大脑变性的有效性,并强调其在COVID-19的神经系统后遗症中的治疗意义。7. 褪黑激素作为抗SARS-CoV-2疫苗的佐剂现在,许多制药公司都在努力生产针对SARS-CoV-2的安全有效疫苗。但是,即使建立了这种疫苗,与健康和年轻人相比,老年人和其他高危人群的疫苗功效也可能较差。褪黑激素可能有助于缩小这方面的差距[109]。褪黑激素可以增加IgG抗体反应并抵消皮质类固醇和/或急性应激的免疫抑制作用的第一个证据[110]。褪黑素可有效对抗衰老中观察到的免疫抑制[111,112]。褪黑激素的这种作用与CD4 + T淋巴细胞的增加有关[113]。关于疫苗,多项研究表明,外源性褪黑激素可作为佐剂,改善癌症疫苗中的CD8 + T细胞反应[114,115],以及针对多种病原体的体液反应[116]。褪黑激素通过增加褪黑素来增强对疫苗的免疫反应外周血CD4 + T细胞和IgG表达B细胞。这些发现特别有趣,因为最近对恢复期的COVID-19患者进行的一项研究发现,CD4 + T细胞对刺突蛋白(大多数疫苗的主要靶标)有强烈反应,而且这种反应与抗SARS-S水平相关。 CoV-2 IgG和IgA [117]。然而,在许多患者中,由于已经报道了复发,因此免疫反应可能还不够,因此,长期的自然免疫似乎无法阻止当前和将来的发作[118]。因此,必须开发有效的疫苗以控制该疾病。 COVID-19患者,特别是老年患者,显示出CD8 + T细胞数量减少抑制IL-2和IL-2受体。众所周知,褪黑激素可以刺激IL-2的产生,并且这样做可以使CD4+ T细胞增加[119]。因此,将其用于抗SARS-CoV-2疫苗可增强对病毒最有效的免疫力。外源性褪黑激素的给药可以增加免疫反应的效力和疫苗诱导的免疫持续时间。而且,由于褪黑素具有抗氧化特性和对免疫系统的多效作用,因此它也可以预防疫苗的不良反应[109]。8. 结束语毫无疑问,当前的COVID-19大流行是最近历史上最具破坏性的事件。该病毒对年轻人造成的损害相对较小,但对老年人和患有慢性炎性疾病的人则构成威胁生命的危险。与其他原因相比,年轻人遭受COVID-19的痛苦不及老年人,因为他们的循环褪黑素水平更高。病毒会引起炎症细胞因子和活性氧的显着增加,而褪黑激素是最好的天然抗氧化剂,抗炎症细胞保护剂,在老年患者中的含量非常低[34]。严重受损的COVID-19患者的一般免疫力受损,褪黑激素可刺激免疫力。因此,以足够的剂量使用非常安全的褪黑激素药物可以预防冠状病毒患者中严重疾病症状的发展,减轻其症状的严重性,和/或减少在活动后冠状病毒感染对患者健康的免疫病理学感染阶段已经结束。此外,褪黑激素可能有助于减少再感染,并作为未来疫苗的强大免疫增强佐剂(图2)。 图2.褪黑激素作为SARS-CoV-2感染中的多因素治疗剂。有关说明,请参见文本。 ROS:自由基氧;RNS:自由基氮。L / M R:淋巴细胞/单核细胞比率。参考文献(展示部分,其余可到原网站查看)1. 罗比(Roby,C.A.)狼人(幻想生物);卡文迪许广场:美国纽约,2005年。2. 张荣;王X. Ni,L.; Di,X .;马宝牛,S .;刘超雷特(RitJ) COVID-19:褪黑激素可作为潜在的辅助治疗方法。生命科学2020,250,117583。[CrossRef]3. Kleszczyn´ski,K .; A.T. Slominski;斯坦布林克雷特(RitJ)迫切需要使用褪黑激素对抗COVID-19的临床试验。营养素2020,12,2561。[CrossRef]4. 黄锡基;李伟;摩尔,新泽西州;崔H. Farzan,M. SARS冠状病毒S蛋白的193个氨基酸片段有效地结合了血管紧张素转化酶。J.Biol。化学2004,279,3197–3201。 [CrossRef]5. 严河;张Y李Y霞郭Y; Zhou,Q.全长人ACE2识别SARS-CoV-2的结构基础。科学2020,367,1444–1448。 [CrossRef]6. Gurwitz,D.血管紧张素受体阻滞剂作为暂定的SARS-CoV-2治疗药物。药物开发。 Res。 2020年81,537–540。 [CrossRef]7. BahrampourJuybari,K.; M.H. Pourhanifeh; Hosseinzadeh,A .; K.Hemati; Mehrzadi,S.褪黑素对包括COVID-19在内的病毒感染的潜力:当前证据和新发现。病毒库。 2020,287,198108。[CrossRef]8. 周Y;侯Y;沉建A.Kallianpur; Zein,J .;卡尔弗(D.A.)法哈,南。 Comhair,S .;菲奥基(Fiocchi)密歇根州加克;等。一种网络医学方法,用于调查和基于人群的COVID-19疾病表现和药物再利用验证。公共科学图书馆2020,18,e3000970。 [CrossRef]9. Al-Zaqri,N .; T. Pooventhiran; A.Alsalme;瓦拉德,我。约翰,上午;Thomas,R.褪黑激素的结构和物理化学评估及其溶液状态的激发特性,重点是其与新型冠状病毒蛋白的结合。 J.摩尔酒2020,318,114082。[CrossRef]10. Feitosa,E.L .; F.T.D.S.S.Júnior;内托,J.A.D.O.N .;马托斯,L.F.L .; M.H.D.S.Moura;罗萨莱斯(T.O.); De Freitas,G.B.L. Covid-19:合理发现褪黑激素作为sars-cov-2主要蛋白酶抑制剂的治疗潜力。诠释J. Med。科学2020,17,2133–2146。 [CrossRef]11. 贝尼特斯·金Ríos,A。;马丁内斯,A .; Antón-Tay,F. Ca2 +/钙调蛋白依赖性的体外抑制褪黑激素的激酶II活性。 Biochim。生物物理学。 ActaGen.Subj。 1996,1290,191–196。 [CrossRef]12. 贝尼特斯·金(G. Huerto-Delgadillo,湖; Antón-Tay,F。3H褪黑素与钙调蛋白的结合。生命科学1993年53,201-207。 [CrossRef]13. 兰伯特新泽西州克拉克;胡珀(N.M.);特纳(A.J.钙调蛋白与血管紧张素转化酶2(ACE2)相互作用并抑制其胞外域脱落。 FEBS Lett。 2008,582,385–390。 [CrossRef] [PubMed]14. 杰希(L. Ji,X .; Milinovich,A .;埃尔祖鲁姆,S。鲁宾B.戈登,S。杨,J .; Kattan,M.W. COVID-19阳性检测的个体化风险预测:来自11,672名患者的结果。胸部2020,158,1364–1375。 [CrossRef] [PubMed]15. 阿伦塞(L.B.);扬·丹瑟(A.H.); M.Poglitsch; R.M.图伊兹; J.C.Burnett; Llorens-Cortes,C .; Ehlers,M.R .;斯特罗克(Sturrock)针对高血压和心力衰竭的肾素-血管紧张素系统和相关肽的新型治疗方法。Pharmacol。修订版2019,71,539–570。 [CrossRef] [PubMed]16. R.A.S.桑托斯; G.Y. Oudit;Verano-Braga,T .;坎塔湾;美国Steckelings; Bader,M.肾素-血管紧张素系统:超越经典范式。上午。 J.生理学。听。大约生理学。 2019,316,H958–H970。 [CrossRef]17. 曾玉华;杨,R.C .;陆德胜肾素-血管紧张素系统受到两次打击可能在严重的COVID-19中起关键作用。高雄医学杂志科学2020,36,389–392。 [CrossRef]18. Jafri-Waghan,H.;Saleh-Ghadimi,S .;所有权w .;莫卢迪,J。伊丽莎白市褪黑激素对心脏恶病质中的神经激素调节:机制综述。 J.细胞。生化。 2019,120,16340–16351。 [CrossRef]19. 坎波斯(LA) Onion-Neto,J。阿玛拉尔(F.G.);密歇根州L.C.; M.Bader; OC Baltatu血管紧张素-褪黑激素轴。 Int。J. Hypertens。 2013、2013。[CrossRef]20. 拉曼(A.澳大利亚哈桑(Hasan); Kobori,H.褪黑素在慢性肾脏疾病中的应用:针对肾脏内肾素-血管紧张素系统的有前途的计时疗法。高血压。 Res。 2019,42,920–923。 [CrossRef]21. Maestroni,G.J.M.褪黑素在免疫缺陷状态,病毒性疾病和癌症中的治疗潜力。实验医学与生物学进展;施普林格:2000年,美国马萨诸塞州波士顿;第467卷,第217-226页。22. 安德森(G.梅斯(Maes)马库斯(RP); Rodriguez,M.埃博拉病毒:褪黑激素作为一种现成的治疗选择。 J. Med。病毒。 2015,87,537–543。 [CrossRef]23. 阿巴斯利奇曼,A .; Pillai,S.Basic Immunology,第6版。爱思唯尔:美国纽约,2019年。24. 安东尼,P.A.;雷斯蒂福,N.P.CD4+ CD25 +T调节细胞,癌症免疫疗法和白介素。J.免疫。 2005,28,120–128。[CrossRef] [PubMed]25. Kryczek,我。魏S.瓦坦湖;Escara-Wilke,J .; Szeliga,W .; E.T. Keller; Zou,W.《最前沿:IL-1和IL-2对IL-17 + T细胞库的调节的相反作用IL-1颠覆了IL-2介导的抑制作用。 J.免疫。 2007,179,1423–1426。 [CrossRef] [PubMed]26. 康恩(T.Bettelli,E。 M. Oukka;库奇鲁(V.K.) IL-17和Th17细胞。安努免疫牧师2009,27,485–517。 [CrossRef] [PubMed]27. 格林(E.A.); Mazumder,A .;张鸿志; Rosenberg,S.A.淋巴因子激活的杀伤细胞现象。白介素2激活的自体人类外周血淋巴细胞裂解天然抗性的新鲜实体瘤细胞。 J. Exp。中1982,155,1823–1841。 [CrossRef] [PubMed]28. 张成; Liu,Y。靶向NK细胞检查点受体或分子进行癌症免疫治疗。面前。免疫2020,11,1295。[CrossRef] [PubMed]29. 秃头,T。M.F.克鲁姆梅尔;史密斯(Mmy)肯塔基州巴里NK细胞癌周期:基于NK细胞的免疫疗法的进展和新挑战。纳特免疫2020,21,835–847。[CrossRef]30. Damoiseaux,J. IL-2–IL-2受体途径在健康与疾病中的作用:可溶性IL-2受体的作用。临床免疫2020,218,108515。[CrossRef]31. Brivio,F .;Fumagalli,L .; Parolini,D.;墨西拿(Messina) Rovelli,F .; Rescaldani,R。; Vigore,L .; Vezzo,R.; Vaghi,M .; Di Bella,S .;等。 T辅助/ T调节淋巴细胞比率是一种新的免疫生物学指标,可以量化癌症患者的抗癌免疫状态。 In Vivo 2008,第22卷,第647-650页。32. 于志兴; Ji,M.S.;严建蔡Y;刘建杨海峰;李YJin Z.C .; Zheng,J.X.Th17 /Treg细胞比率作为早期急性呼吸窘迫综合征的危险指标。暴击护理2015,19,82.[CrossRef]33. 佩罗塔(F. G.Mazzeo,G .; M. Boccia;阿罗纳(L. D'Agnano,V。 K. Komici; Mazzarella,G.;帕雷拉河; Bianco,A。COVID-19和老年人:对发病机理和临床决策的见解。老化诊所。经验Res。 2020,32,1599–1608。 [CrossRef]34. TanD.X .; Hardeland,R.褪黑激素在与先天性免疫反应和破坏性炎症反应过度有关的致命传染病中的潜在效用:关注COVID-19。褪黑素研究。 2020,3,120–143。 [CrossRef]35. Hardeland,R。褪黑激素和炎症-双刃刀片的故事。 J.松果体研究。 2018,65,e12525。 [CrossRef] [PubMed]36. 夏Y;陈珊;曾南赵Y朱成;邓乙;朱G;尹Y王威;哈德兰(R.等。巨噬细胞生物学中的褪黑激素:当前的理解和未来的观点。 J.松果体研究。2019,66,e12547。 [CrossRef] [PubMed]37. 达库尼亚·佩德罗萨(AM C. Weinlich,R .; Mognol,G.P .;罗布斯(英国);de Biaso Viola,J.P .;坎帕阿马兰特门德斯(G.P.)褪黑素通过阻断NFAT介导的CD95配体上调,保护CD4 +T细胞免于激活诱导的细胞死亡。J.免疫。2010,184,3487–3494。 [CrossRef]38. 尚Y .; Xu,S.P .;吴Y江永兴吴志英Yuan,S.Y。;姚升褪黑素可减轻内毒素血症大鼠的急性肺损伤。下巴。 Med.J.2009,122,1388-1393。39. 邓(W.G.);唐顺德;曾庆平;吴克K褪黑素通过抑制p52乙酰化和结合来抑制巨噬细胞环氧合酶2和诱导型一氧化氮合酶的表达。 Blood 2006,108,518–524。 [CrossRef]40. Z.Ahmadi;Ashrafizadeh,M。Melatonin作为Nrf2的潜在调节剂。丰达临床Pharmacol。2020年34,11-19。 [CrossRef]41. 曼彻斯特(L.C.) A. Coto-Montes; Boga,J.A .; L.P.H.安德森;周Z.加拉诺(A. Vriend,J .; Tan D.X .;雷特(RitJ)褪黑素:一种古老的分子,可以使氧气代谢耐受。 J.松果体研究。 2015,59,403–419。 [CrossRef]42. A.C.科多G.G. Davanzo;蒙特罗(L.B.); Souza,G .; Muraro,S。卡雷加里(V.)比亚吉Crunfli,F。 J·雷斯特雷波;Vendramini,体育;等。通过HIF-1α/糖酵解依赖性轴,升高的葡萄糖水平有利于SARS-CoV-2感染和单核细胞反应。细胞代谢。 2020,32,437–446。 [CrossRef]43. Reiter,R.J .;沙尔马河。马青;刘超Manucha,W.;阿布鲁乌·冈萨雷斯(Abreu-Gonzalez);Dominguez-Rodriguez,A。活化免疫细胞中葡萄糖代谢的可塑性:褪黑素抑制COVID-19疾病的优势。褪黑素研究。2020,3,362–379。 [CrossRef]44. 加拉诺(A. Tan D.X .;雷特(RitJ)褪黑素作为抵抗氧化应激的天然盟友:一项理化检查。 J.松果体研究。 2011,51,1-16。 [CrossRef] [PubMed]45. Reiter,R.J .;Tan D.X .; Rosales-Corral,S。加拉诺(A. Jou,M.J .; Acuna-Castroviejo,D.褪黑素可减轻线粒体融化:与SIRT3的相互作用。诠释J.摩尔科学2018,19,2439。[CrossRef] [PubMed]46. Bzyar,H .;溶解,h。莫迪,L。萨利,W。人口,f。 M.Ravanbakhsh; Zare Javid,这个。事实补充非手术牙周治疗补充褪黑激素对慢性牙周炎2型糖尿病患者牙周状态,血清褪黑激素和炎症标志物的影响:一项双盲,安慰剂对照试验。炎症药物学2019,27,67–76。 [考研]47. 桑切斯-洛佩斯(A.L.) G.G. Ortiz; F.P. Pacheco-Moises; M.A.Mireles-Ramírez;英国比泽尔-昆特罗(Bitzer-Quintero);德尔加多·拉拉(Delgado-Lara),哥伦比亚特区;拉米雷斯·齐拉诺(L.J. Velázquez-Brizuela,IE褪黑激素对复发性多发性硬化症患者血清促炎细胞因子和氧化应激标记物的功效。拱。中Res。 2018,49,391–398。 [CrossRef] [PubMed]48. 库奇卡金(B. Lykkesfeldt,J。 Nielsen,H.J .; Reiter,R.J .;罗森伯格,J。 Gögenur,I.褪黑素治疗大血管手术后的外科手术压力的安全性研究。 J.松果体研究。 2008,44,426–431。 [CrossRef]49. 赵中;陆昌;李涛;王威;是的曾河;Ni,L .;赖志;王X.Liu C.的保护作用褪黑素对大鼠和人类脑缺血和再灌注的影响:体内评估和一项随机对照试验。 J.松果体研究。 2018,65,e12521。 [CrossRef]50. E. Shafiei; M.Bahtoei;拉吉(Raj) Ostovar,A .;伊朗普尔阿克巴尔扎德(Akbarzadeh) Shahryari,H .; Anvaripour,A .; Tahmasebi,R .; Netticadan,T .;等。 N-乙酰半胱氨酸和褪黑激素对冠状动脉搭桥术患者早期再灌注损伤的影响:一项随机,开放标签,安慰剂对照的试验。医学2018,97,e11383。 [CrossRef] [PubMed]51. Reagan-Shaw,S .; Nihal,M .; N.艾哈迈德(Ahmad,N.)重新探讨了从动物到人类研究的剂量转换。 FASEB J.2008,22,659–661。 [CrossRef]52. 卡迪纳利(D.P.)临床上使用褪黑激素剂量是否足以实现褪黑激素诱导的细胞保护作用?褪黑素研究。 2019,2,106–132。[CrossRef]53. 陈娜;周敏;董X.曲建。龚峰;韩Y;邱Y;王建刘洋魏Y;等。武汉市2019例新型冠状病毒性肺炎99例流行病学和临床特征柳叶刀2020,395,507–513。[CrossRef]54. 黄昌王Y;李旭任丽;赵建胡Y;张丽;范G;徐建顾旭等。中国武汉市2019年新型冠状病毒感染患者的临床特征。柳叶刀2020,395,497–506。 [CrossRef]55. 伏特,H。加西亚(J.A.); Doerrier,C .; Díaz-Casado,M.E .; Guerra-Librero,A .;洛佩斯,L.C .; Escames,G .; J.A. Tresguerres; Acuña-Castroviejo,D。分子相同但表达不同:衰老和败血症触发NLRP3炎症小体激活,这是褪黑激素的靶标。 J.松果体研究。 2016,60,193–205。 [CrossRef]56. 戴,W。黄辉;Si,L。胡S.周力;徐林;Deng,Y.褪黑激素可通过PINK1/ Parkin1信号通路预防败血症诱发的肾损伤。诠释J.摩尔中2019,44,1197–1204。 [CrossRef]57. 张建。王力;谢,W。胡S.周华;朱鹏; Zhu,H.褪黑素可减轻败血性心肌病中的ER应激和线粒体损伤:一种涉及BAP31上调和MAPK-ERK途径的新机制。 J.细胞。生理学。 2020,235,2847–2856。 [CrossRef]58. 陈建夏华;张丽;张华王丹;陶,X.褪黑素对败血症诱导的保护作用激活SIRT1 / STAT3通路引起大鼠肝损伤和糖异生异常。生物医学。药剂师。 2019,117,109150。[CrossRef]59. Gitto,E .; Reiter,R.J .; Amodio,A .;罗密欧Cuzzocrea,E .; Sabatino,G .; Buonocore,G。 V. G.Trimarchi; Barberi,I.呼吸窘迫综合征早产儿的慢性肺部疾病早期指标及其对褪黑激素的抑制作用。 J.松果体研究。 2004,36,250–255。 [CrossRef]60. Gitto,E .; M.Karbownik。 Reiter,R.J .;仙谭D. Cuzzocrea,S .; Chiurazzi,P .;科尔达罗,S。 G.Corona; G.Trimarchi; Barberi,I.褪黑素治疗脓毒症新生儿的效果。小儿科Res。 2001,50,756–760。 [CrossRef]点击:查看更多医学文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:mdpi
2021-01-13 19:22:19
褪黑激素能否成为治疗COVID-19的潜在“银弹”?
丹尼尔b。格雷戈里·卡迪纳利m。 Brown ௨和新闻稿r。 Pandi-Perumal ௩,*1 阿根廷天主教大学,医学院,阿根廷布宜诺斯艾利斯1007; daniel_cardinali@uca.edu.ar2 多伦多大学精神病学中心成瘾与心理健康中心,加拿大,多伦多,M5T 1R8; gregory.brown@camh.ca3 Somnogen Canada Inc.,加拿大安大略省M6H 1C5,多伦多大学街* 对应:Pandiperumal2020@gmail.com收到:2020年11月4日;接受:2020年11月24日;发布时间:2020年11月26日 摘要:提倡褪黑激素作为一种慢性细菌细胞保护剂,可以抵消COVID-19感染的后果。由于其作为抗氧化剂,抗炎药和免疫调节化合物的广泛作用,褪黑激素在损害SARS-CoV-2感染后果方面可能是独特的。此外,间接证据表明褪黑激素可能通过干扰SARS-CoV-2/血管紧张素转化酶2的缔合而发挥抗病毒作用。褪黑激素还是一种有效的生时剂,可以逆转昼夜节律对社会隔离的破坏,并控制重症患者的del妄。褪黑激素作为一种细胞保护剂,可抵抗多种合并症,例如糖尿病,代谢综合征以及缺血性和非缺血性心血管疾病,这些疾病会加重COVID-19疾病。鉴于有证据表明感染COVID-19的患者会出现神经后遗症,因此褪黑激素的另一种潜在应用是基于其神经保护特性。由于褪黑激素是在最小程度的认知障碍中控制认知衰退的有效手段,因此应考虑其对SARS-CoV-2感染神经后遗症的治疗意义。最后,但很重要的是,外源性褪黑激素可以作为佐剂,能够增强抗SARS-CoV-2疫苗的功效。我们在这篇综述中讨论实验证据表明褪黑激素是COVID 19大流行中潜在的“银子弹”。 关键词:老化抗SARS-CoV-2疫苗接种;计时疗法; 2019冠状病毒病大流行;细胞保护;糖尿病;炎;代谢综合征;褪黑激素认知障碍;神经变性氧化应激肾素-血管紧张素系统1. 介绍根据维基百科的说法,在民间传说中,用银子弹铸成的子弹通常是对付狼人或女巫的少数武器之一[1]。该术语也是对一个难题的简单,看似神奇的解决方案的隐喻:例如,青霉素是可以治疗并成功治愈许多细菌感染的灵丹妙药。我们在本次迷你讨论中讨论了褪黑激素(一种在所有已知的需氧生物中存在的异常的系统发育保护分子)作为COVID-19大流行的预防和治疗剂的潜力。这种可能性已成为文献[2,3]的分析主题。作为对该观点的扩展,我们在此讨论暗示褪黑激素(a)预防SARS感染CoV-2的证据; (b)适合作为有效的抗炎/免疫调节/抗氧化剂;(c)抵销计时性破裂; (d)与多种合并症作斗争,例如糖尿病,代谢综合征以及缺血性和非缺血性心血管疾病,这些疾病加重了COVID-19疾病; (e)在急性和慢性感染的SARS-CoV-2患者中发挥神经保护作用;(f)可以作为增强抗SARS-CoV-2疫苗的佐剂。这种多因素治疗潜力是褪黑激素所独有的,而其他任何针对COVID 19大流行的治疗药物均无法共享。通过搜索包括MEDLINE和EMBASE的数据库,已出版文献的参考书目以及临床试验注册中心/数据库来识别医学文献。搜索最后更新于2020年11月23日。2. 褪黑素在SARS-CoV-2感染中的作用SARS-CoV-2病毒通过血管紧张素转换酶(ACE)2进入肺上皮细胞和其他组织器官。病毒粒子表面上的尖峰糖蛋白与ACE2二聚体对接是人类细胞SARS-CoV-2感染过程中必不可少的步骤[4]。全身性肾素-血管紧张素系统失衡导致ACE2表达下调,同时也促进了多器官损伤。ACE2受体必须位于脂质筏中,并且似乎需要形成二聚体以使SARS-CoV-2进入。在SARS-CoV-2对人细胞的攻击中,病毒体表面上的峰状糖蛋白三聚体对接至ACE2二聚体结构是必不可少的步骤[5,6]。膜融合后,病毒RNA基因组被释放到细胞质中并被翻译成两种多蛋白,这些蛋白被SARS-CoV-2主蛋白酶(也称为胰凝乳蛋白酶样蛋白酶)切割,从而形成复制转录复合物。几项实验表明褪黑激素可能是COVID-19中有效的抗病毒药物大流行(例如[7])。通过实施基于系统药理学的网络医学平台,量化HCoV宿主相互作用组的包膜和核衣壳蛋白与人蛋白质-蛋白质相互作用网络中的药物靶标之间的相互作用,鉴定了16种潜在的抗HCoV可重复利用药物,包括褪黑素,巯基嘌呤和西罗莫司[8]。褪黑素加巯基嘌呤的药物组合被确定可有效击中HCoV宿主子网,并被推荐作为SARS-CoV-2感染的潜在药物组合。在另一项研究中,褪黑激素的结构和理化性质使用电子结构方法和分子力学工具作为褪黑激素针对冠状病毒2蛋白的生物活性的预测因子进行了检验[9]。基于获得的对接分数,作者提出褪黑激素可以有效防御脆弱人群的病毒载量。SARS-CoV-2的主要蛋白酶是一种在冠状病毒物种中保守的酶。通过使用计算机软件识别新的可能的SARS-CoV-2主要蛋白酶抑制剂,分子对接研究描述了74种配体复合物的结合位点和相互作用能[10]。褪黑激素显示与SARS-CoV-2主蛋白酶的相互作用能比其他配体更好。褪黑素调节病毒感染的另一种可能方法与其有效结合和抑制钙调蛋白(CaM)有关[11,12]。 CaM调节ACE2在质膜中的表面表达和保留,并且该钙结合蛋白的抑制剂通过减少CaM与ACE2之间的结合来增强ACE2胞外域的释放[13]。因此,褪黑激素可能是被归类为病毒颗粒融合过程中ACE2-SARS-CoV-2偶联的间接抑制剂。褪黑激素可能具有抗病毒作用的间接证据可能解释了一项研究,该研究监测了11672名具有预测COVID-19感染的统计模型的患者[14]。男性,非裔美国人,老年患者以及已知暴露于COVID-19的患者,其COVID-19阳性的风险较高,而接受褪黑素,帕罗西汀或卡维地洛治疗的患者的风险降低。SARS-CoV-2-ACE2相互作用引起了对基于肾素-血管紧张素系统的COVID-19治疗策略发展的极大兴趣。通常,肾素-血管紧张素系统通过ACE /血管紧张素II /血管紧张素II 1型受体(AT1R)轴诱导血管收缩,高血压,炎症,纤维化和增殖,并通过ACE2 /血管紧张素诱导相反的作用(1-7) / Mas轴功能[15,16]。肾素-血管紧张素系统被慢性炎症激活高血压,糖尿病,肥胖和癌症。 SARS-CoV-2诱导ACE2内化和脱落,导致ACE2 /血管紧张素(1-7)/Mas轴失活。据推测,在已有炎症的患者中,肾素-血管紧张素系统受到两次打击可驱动COVID-19进程。第一个打击源于激活ACE /血管紧张素II / AT1R轴的慢性炎症,第二个打击源于使ACE2 /血管紧张素(1-7)/Mas轴失活的COVID-19感染[17]。肾素-血管紧张素系统的这两次打击可能是导致COVID-19合并症并发低度炎症(例如肥胖症,糖尿病,高血压和癌症)的患者或老年患者死亡率增加的主要原因。褪黑素是血管紧张素II激活的有效抑制剂,可能促进了血管紧张素(1-7)的作用[18-20]。因此,褪黑激素的给药可以抑制肾素-血管紧张素系统的两次打击。3. 褪黑素作为抗炎/免疫调节和抗氧化治疗褪黑素是一种存在于所有形式的有氧呼吸中的甲氧基吲哚,其主要功能显然是细胞保护作用,具有间接的抗病毒作用,作为抗炎药,抗氧化剂和免疫调节剂[21,22]。3.1. 褪黑素的抗炎/免疫调节活性T淋巴细胞是人类免疫系统中最进化的细胞。 T辅助淋巴细胞(Th)(CD4 +)细胞通常包括Th1,Th2和Th17(CD4 + CD17 +)细胞和调节性T(Treg)(CD4 + CD25 +)细胞。相对于Treg细胞,Th1,Th2和Th17细胞被称为效应T细胞[23]。尽管免疫系统非常复杂,但其功能的基础基本上基于三个主要的T淋巴细胞亚群,即Th1,Treg和T17淋巴细胞。Th细胞通过诱导自然杀伤(NK)细胞进化为淋巴因子激活的杀伤细胞[27-29]来激活T reg淋巴细胞[24],抑制Th17细胞[25,26]并促进抗原非依赖性细胞毒性。 Th细胞最重要的作用是通过分泌IL-2(T淋巴细胞的主要生长因子)来完成的[27,30]。这三个主要的T淋巴细胞亚群之间发生的关系构成了人类主要系统疾病的主要生物标志物,包括癌症,自身免疫性疾病和感染。三个相关比率包括Th1-Treg细胞比率(Th1 / Treg R),Th17-Treg细胞比率(Th17/ T regR)和Th1-Th17细胞比率(Th1 / Th17 R)。异常低的Th1 / Treg比值是晚期肿瘤的主要特征,取决于Th1细胞数的减少与Treg细胞数的增加[31]。自身免疫性疾病的主要特征是由于Th17细胞的增加和Threg细胞的下降所致的Th17 / TregR的增加[26],Th17细胞的作用抑制了它们的生长[26]。 Th17/ Treg R的这种增加也发生在冠状病毒引起的急性呼吸窘迫综合征中[32,33]。SARS-CoV-2感染的主要病理生理学涉及中性粒细胞,巨噬细胞和肥大细胞的激活(“细胞因子风暴”)引起的促炎性细胞因子的急剧上调。它包括白介素(IL)-1β,IL-6和IL-17的增加; C反应蛋白和肿瘤坏死因子(TNF)α,通常在一周内会逐渐增加内源性抗病毒细胞,CD8 + T细胞,NK细胞和γδ-T细胞的水平和活性[34] 。但是,这种抗病毒应答的活性在SARS-CoV-2感染中受损,这些抑制的细胞显示出精疲力竭的迹象,这与肿瘤微环境中观察到的免疫抑制作用经典地相关。褪黑激素通过多种途径发挥抗炎作用。其中之一是sirtuin-1,抑制巨噬细胞向促炎型的分化[35,36]。褪黑激素的抗炎作用还包括抑制NF-κB的活化[37-39]。此外,在肝脏保护和心脏保护研究中,褪黑激素刺激了Nrf2的产生[40]。炎症通常与细胞因子和趋化因子的产生升高有关。褪黑激素导致促炎性细胞因子(TNF-α,IL-1β,IL-6,L-8,IL-17)减少,抗炎性细胞因子(如IL-10)水平升高[35,41]。在SARS-CoV-2感染中,高炎症性单核细胞/巨噬细胞大量堆积在下呼吸道中,它们在确定疾病的严重程度中起关键作用。感染SARS-CoV-2病毒的单核细胞/巨噬细胞通过生成稳定低氧诱导因子1α(HIF-1α)的活性氧,将其代谢过程从线粒体氧化磷酸化重编程为胞质糖酵解以产生ATP(Warburg效应)[42] 。具有这种代谢表型的单核细胞/巨噬细胞产生更多的细胞因子,导致T细胞破坏和肺泡内膜细胞杀伤,严重加剧了COVID-19感染。褪黑素将高度促炎的糖酵解M1巨噬细胞转化为消炎的M2巨噬细胞,后者利用线粒体的氧化磷酸化作用[43]。褪黑激素的这种作用可能是通过充分证明的HIF-1α的下调来发挥的[36]。 3.2. 褪黑素的抗氧化性能在细胞质和细胞核中,褪黑激素都对自由基具有重要的抗氧化剂和清除作用,而自由基基本上独立于受体[41]。这些作用通过三种方式发挥:(a)褪黑激素是一种自由基清除剂; (b)褪黑激素被代谢成具有高抗氧化活性的化合物; (c)褪黑激素是一种间接抗氧化剂,可刺激抗氧化剂酶的合成并抑制前氧化剂酶的合成。褪黑素在防止氧化损伤和消除自由基方面被证明优于维生素C和E [44]。此外,褪黑激素可增强其他抗氧化剂的作用,例如维生素C和Trolox。褪黑素在局部缺血(与自由基无关)的条件下发挥了几种抗凋亡和细胞保护作用,这可归因于其对线粒体膜的稳定作用[45]。在炎症水平高的疾病中,褪黑激素的应用显示出令人鼓舞的结果,可大大减弱循环中的细胞因子水平。糖尿病和牙周炎[46]和严重的多发性硬化症[47]的患者对此进行了记录。此外,在炎症的急性期,在手术压力[48],脑再灌注[49]或冠状动脉再灌注[50]期间,褪黑激素治疗可降低促炎细胞因子的水平。通常,褪黑激素的这些抗炎/免疫调节和抗氧化作用需要通过异速测定法得出的剂量远高于褪黑激素发挥计时作用的3-10 mg /天范围。异形法适用于比例随大小变化的属性,而等角线与大小的关系保持不变。体表面积而不是体重与几种哺乳动物的生物学参数密切相关,包括氧气利用率,热量消耗,基础代谢,血容量,血浆血浆蛋白和肾功能,因此被认为是在转换剂量进行翻译时使用从动物到人类[51]。异速测定法通常用于确定I期人类临床药物试验的剂量。在临床医学中,通过Allometry转换成人数据以预测儿童的药物药代动力学参数是可行的,这可以显着降低儿童使用的新药的毒性和死亡率。值得注意的是,从动物研究中得出的理论人体等效剂量(研究褪黑素的抗炎/免疫调节/抗氧化活性)比人类通常使用的剂量大2至3个数量级,即100-300 mg /天范围[52]。根据COVID-19临床报告,患有严重感染的患者发生败血症和心脏骤停的风险增加[53,54]。现有信息表明,褪黑激素的应用可以通过抑制NLRP3途径来改善败血性休克[55]。在大鼠中,褪黑激素对败血症引起的肾脏损害,败血性心肌病和肝损害具有预防作用[56-58]。在人类新生儿败血症中,褪黑激素治疗后临床结局得到了改善[59-62]。褪黑激素还据报道对患有心肌梗塞,心肌病,高血压心脏病和肺动脉高压的患者有益。在重症患者中,深度镇静会增加长期死亡率,褪黑激素的使用会减少镇静剂的使用和疼痛的发生频率,躁动和焦虑[63],还可以改善重症监护病房患者的睡眠质量。因此,在COVID-19中使用大剂量褪黑素的基本原理不仅着重于减轻感染引起的呼吸系统疾病,而且着重于全面改善和预防可能的并发症,包括神经系统并发症[64]。 最近的一项研究确定了大剂量褪黑激素(36 mg /天每天72mg除了标准和/或经验疗法外,还分四次服用)作为辅助疗法[65]。入院的所有患者均具有流感样症状,并且胸部影像学检查显示玻璃膜混浊非常提示COVID-19肺炎。接受褪黑激素的10例患者具有年龄(> 60岁)或/和既定合并症确定的高风险特征。除嗜睡外,未观察到明显的副作用。观察到时间可用于临床改善(症状减轻,肺浸润的稳定和/或消退,促炎性标志物减少),以及机械通气的需求,住院时间和结局(死亡,恢复或恢复)的益处。放电)[65]。另一份最近的报告是根据哥伦比亚大学欧文医学中心的临床经验进行的回顾性分析,涉及用于治疗需要气管插管的COVID-19感染患者的呼吸窘迫的药物[66]。在对791名需要插管的诊断为COVID-19的患者进行了全面评估之后,褪黑激素的应用是唯一与统计学上更高的阳性临床结果相关联的药物,包括插管患者和需要机械通气的患者的生存率。截止到2020年11月23日,该论文已作为预印本发表[66]。4. 褪黑激素作为一种慢性生物制剂慢性生长期一词始于1970年代初,已被广泛用于定义一种影响人体时钟生理调节的药物,特别是能够短期或长期或预防性地恢复失调的昼夜节律的药物。避免在遭受环境攻击后将其中断[67]。相变的大小和方向取决于化合物在其中的昼夜节律相,这反过来在行为节律中产生明显的相变。例如,在早晨服用褪黑素会延迟昼夜节律的阶段,而在晚上服用会褪色昼夜节律的阶段。在一天的大部分时间里,褪黑激素的给药无法改变内源性时钟的相位(相位响应曲线)[68]。衰老与对COVID-19感染的更高脆弱性的关联是一个非常重要的主题。几个因素,包括由于社会孤立而造成的更大压力,随着年龄的增长褪黑激素水平降低以及个体在晚上没有足够的光照,这会降低褪黑激素水平并破坏昼夜节律,这对于维持老年个体的昼夜健康至关重要。在其他几种合并症中,老年人更容易受到冠状病毒感染,而衰老与更易感染COVID-19感染的关联目前是最重要的主题[33]。在社会上孤立的老年人中,压力和沮丧感的增加导致促炎性增加和抗病毒免疫反应降低。在强制锁定期间呆在室内的后果中,昼夜节律尤其是睡眠/唤醒周期的节律紊乱非常频繁,并且与年龄相关的昼夜节律不齐发展。昼夜节律系统的失调被认为与老年个体的几种医学和精神状况有关,尤其是心血管和神经退行性疾病[69,70]。诸如当前大流行期间的强制锁定会中断暴露于环境光(最重要的环境Zeitgeber)的时间和持续时间。使用手机,平板电脑和计算机观看新闻,狂欢观看网络连续剧以及在社交媒体上进行连接会导致傍晚的屏幕时间过长。屏幕发出的蓝光会抑制夜间褪黑激素的自然产生。白天的活动水平也会影响睡眠方式。 低水平的活动(无论是由于坐月子还是沮丧),对于剧烈的活动(例如,由于压力或工作负荷过大)也会对睡眠产生负面影响[71,72]。衰老通常与睡眠效率和连续性的显着降低有关,这与褪黑激素节律幅度的显着降低相吻合,因此也与许多其他昼夜节律有关[73]。老年人中经常报告清晨觉醒的增加和入睡的困难。褪黑素分泌受损与老年人失眠症中遇到的睡眠障碍有关。的确,衰老可能是褪黑激素缺乏引起的相对昼夜节律失调所导致或加重的过程。褪黑素通过公认的生长期能力,可以有效改善老年人的生活质量[74]。衰老期间睡眠障碍的常见原因包括但不限于生活方式(例如退休生活),既往的医学和精神疾病,多药店,不良的睡眠习惯,既往的睡眠障碍和心理困扰[75] 。睡眠功能障碍和睡眠障碍在老年人口中非常普遍[71]。如上所述,在COVID-19大流行期间,睡眠中断变得更加普遍。计时疗法的目的是在考虑人体的昼夜节律的情况下优化药物治疗[76,77]。计时疗法通过两种方式起作用:(a)它改变患者的睡眠/苏醒节律,以改善几种病理的后遗症; (b)通过评估患者的昼夜节律可以改善治疗时机。两种方法都与COVID-19大流行期间老年患者实施计时疗法策略有关。即使是生物钟的轻微功能障碍,也会极大地影响睡眠/苏醒生理,导致过多的昼夜嗜睡,睡眠发作潜伏期增加,阶段延迟或睡眠发作进展,频繁的夜间觉醒,睡眠效率降低,快速眼动睡眠的延迟和缩短,或腿部周期性运动增加[78]。计时疗法旨在通过适当的睡眠卫生,定时的光照以及使用褪黑激素这样的生长期药物来恢复老年人的适当的昼夜节律,从而影响昼夜节律的输出阶段。节奏,从而控制时钟[79]。关于计时疗法的第二个基础,应该强调的是免疫系统具有很强的昼夜节律性[80]。在日常活动开始时,促炎性介质(如白介素(IL)-1β,IL-6和IL-12)以及巨噬细胞和白细胞活性的表达增加,从而导致对组织的潜在损害。相比之下,抗炎介质和其他生长或血管生成因子在静止期达到峰值(例如,参见[81])。在静止阶段,针对病毒抗原的CD4 +和CD8 + T细胞活性均达到最高水平,而自然杀伤细胞的细胞毒性活性在一天的活跃部分开始时最为严重。实际上,一天中发生病毒感染的时间会影响生存。例如感染在活动阶段开始时,比在休息阶段开始时发生的感染更具致命性[82]。这些时间模式在老年人中可能会受到干扰,因此在老年人群中使用免疫调节剂和抗炎药时应考虑昼夜节律紊乱[81]。合理的昼夜节律性抗炎药(计时疗法)可以针对COVID-19患者中有害的炎性级联反应,而不会干扰免疫系统对抗病毒的作用。这对于低剂量地塞米松治疗可能非常重要,因为最近的研究表明它可以将严重感染的COVID-19患者的死亡率降低到三分之一[83]。接受机械通气的高达50%的住院老年患者和80%的重症患者发现妄[84]。用褪黑激素治疗这种经时破裂与缩短重症监护病房住院时间,减少ir妄发生率和改善睡眠质量有关[85]。在COVID-19疾病中,大约15%的住院患者意识受损,范围从嗜睡到神志不清,ir妄,木僵和昏迷[86]。褪黑激素应被视为有效改善睡眠的药物,并有可能最大程度地减少服用苯二氮卓类药物或抗精神病药可能会使老年人或患有中枢性呼吸抑制的人的ir妄恶化[87]。5. 褪黑素和细胞保护糖尿病,代谢综合症以及缺血性和非缺血性心血管疾病是加重COVID-19疾病的合并症。代谢综合征的患病率在15%到30%之间变化,具体取决于所考虑的地区,当存在代谢综合征时,心血管死亡率会增加1.5到2.5倍[88,89]。据美国疾病控制与预防中心报道,据估计,患有2型糖尿病后发生代谢综合症的人死于COVID-19的风险可能高达10倍[90]。根据COVID-19患者的病情轻重,确诊的COVID-19病例中确定的心血管合并症数量在4.2%至40%之间,并且在疾病过程中急性心脏损伤的发生率在12%至23%之间。调查[91]。因此,对这些疾病的充分控制是在正在进行的大流行中实现的主要目标。在人类中,糖尿病,代谢综合征,缺血性和非缺血性心血管疾病中循环褪黑激素水平持续降低,并且通过有限数量的临床试验表明褪黑激素的治疗价值,这些临床试验通常以2-5 mg /日范围[92,93]。在代谢综合征,缺血性和非缺血性心血管疾病的动物模型研究中,褪黑激素在减少症状方面非常有效[52]。人体中几乎每个细胞都含有褪黑激素,其含量远高于从松果体的血液中循环的褪黑素[94]。现已证实线粒体合成褪黑激素的能力,但由于无法解释的原因,细胞内褪黑激素不会进入细胞外空间。要改变细胞内褪黑激素的水平,需要的剂量要比用作生时激素的剂量高得多[95]。此外,从动物研究得出的异速计算表明,预期的人类褪黑激素细胞保护剂量为40-100 mg /天,在临床实践中很少使用。 褪黑激素能否成为治疗COVID-19患者的潜在“银弹”?(下)点击查看: 更多医学类文章 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-13 19:05:31
DNA编辑方法显示有望治疗早衰小鼠模型
研究人员使用最近开发的DNA碱基编辑技术纠正加速的衰老症。研究人员已经成功地使用了DNA编辑技术,以延长与早衰相关的遗传变异的小鼠的寿命,早衰是一种罕见的遗传疾病,可导致儿童极端过早衰老,并可以显着缩短其预期寿命。这项研究发表在《自然》杂志上,该研究是美国国立卫生研究院下属的国家人类基因组研究所(NHGRI)的合作。波士顿广泛的哈佛大学和麻省理工学院;以及田纳西州纳什维尔的范德比尔特大学医学中心。 DNA由四个化学碱基-A,C,G和T组成。早衰症,也称为Hutchinson-Gilford早衰综合症,是由核纤层蛋白A(LMNA)基因的突变引起的 ,其中一个DNA碱基C改变为T。这种改变会增加有毒蛋白质progerin的产生,从而导致快速老化过程。 在出生的头两年内,大约有四百万儿童被诊断出患有早衰症,并且几乎所有这些儿童在儿童期和青春期都会出现健康问题,这些问题通常与老年有关,包括心血管疾病(心脏病和中风),头发减少,骨骼问题,皮下脂肪减少和皮肤变硬。在这项研究中,研究人员使用了一种突破性的DNA编辑技术,即 碱基编辑(链接是外部的),用一个DNA字母替换另一个DNA字母而不损坏DNA,以研究改变这种突变如何影响小鼠的早衰样症状。NHGRI医学基因组学和代谢遗传学分部高级研究员,NIH主任,《美国国家卫生研究院》的相应作者,医学博士Francis S. Collins,MD,Ph.D.表示:“这场灾难性疾病对患病儿童及其家庭造成的损失不可低估。”纸。“几乎在所有受影响的儿童中,一个特定的突变都会导致该疾病的事实使我们意识到,我们可能拥有解决根本原因的工具。只有在基础基因组学研究方面进行了长期投资,才能开发出这些工具。”该研究是早衰研究的又一个里程碑,因为 美国食品药品监督管理局 于2020年11月批准了首个早衰治疗药物lonafarnib。药物疗法可以延长寿命,但不能治愈。DNA编辑方法可能会在将来提供更多甚至更引人注目的治疗方法。David Liu博士及其在Broad Institute的实验室在2016年开发了基础编辑方法,该方法部分由NHGRI资助。 该论文的资深作者刘博士说:“ CRISPR编辑虽然具有革命性意义,但仍无法在多种细胞中进行精确的DNA改变。” “我们开发的碱基编辑技术就像文字处理器中的查找和替换功能。在将一个碱基对转换为另一个碱基对方面非常有效,我们认为这对治疗早衰等疾病非常有效。” 为了测试其基础编辑方法的有效性,该团队最初与Progeria研究基金会合作,从早衰患者那里获得结缔组织细胞。该小组在实验室设置中使用了患者细胞内LMNA 基因的基础编辑器 。该治疗方法可修复90%的细胞中的突变。 “ Progeria研究基金会很高兴能与NIH的Collins博士小组和Broad研究所的Liu博士小组合作进行这项开创性研究,” Leslie Gordon博士是该研究的合著者和医学总监Progeria研究基金会,部分资助了这项研究。“这些研究结果为研究早衰儿童的新疗法和治疗方法提供了令人兴奋的新途径。” 取得这一成功之后,研究人员通过将DNA编辑混合物的单次静脉注射注射入将近出生的几只具有早衰症突变的小鼠中,从而对基因编辑技术进行了测试。基因编辑器成功地恢复了包括心脏和主动脉在内的各种器官中相当大部分细胞中LMNA 基因的正常DNA序列 。治疗后六个月,许多小鼠细胞类型仍保持正确的DNA序列。在主动脉中,结果甚至比预期的要好,因为编辑后的细胞似乎已经取代了携带早衰突变并退出早期退化的细胞。最引人注目的是,经过治疗的小鼠的寿命从七个月增加到将近1.5年。研究中使用的小鼠的平均正常寿命为两年。“作为医师科学家,以为您在实验室中研究的想法可能实际上具有治疗益处,真是令人兴奋,”心血管医学部医学助理教授乔纳森·布朗(Jonathan D. Brown)说。范德比尔特大学医学中心。“最终,我们的目标将是尝试为人类开发这种方法,但是在这些模型系统中,我们首先需要解决其他关键问题。”NHGRI,NIH共同基金,美国国家过敏和传染病研究所,美国国家生物医学成像与工程研究所,美国国立普通医学科学研究所,美国国家心肺血液研究所等研究经费得到了部分支持以及国家转化科学促进中心。国家人类基因组研究所(NHGRI)是美国国立卫生研究院(NIH)的27个研究所和中心之一,NIH是卫生和人类服务部的机构。NHGRI内部研究部开发并实施了用于理解,诊断和治疗基因组和遗传疾病的技术。 关于美国国立卫生研究院(NIH): 美国国立卫生研究院(NIH)是美国的医学研究机构,包括27个研究所和中心,并且是美国卫生与公共服务部的一部分。NIH是进行和支持基础,临床和转化医学研究的主要联邦机构,并且正在调查常见和罕见疾病的病因,治疗方法和治愈方法。点击:查看更多医学文章 免费试用文档翻译 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:NIH
2021-01-07 18:49:12