福昕翻译

>

饮食研究

咖啡及其成分对胃肠道和脑肠轴的影响
咖啡及其成分对胃肠道和脑肠轴的影响阿马亚·伊里安多·德洪(Amaia Iriondo-DeHond),何塞·安东尼奥·乌兰加(JoséAntonio Uranga),玛丽亚·多洛雷斯·德尔卡斯蒂略(Maria DoloresdelCastillo)和拉奎尔·阿巴洛(Raquel Abalo)引文:A。Iriondo-DeHond;乌兰加(J.A.)马里兰州德尔卡斯蒂略; Abalo,R.咖啡及其成分对胃肠道和脑肠轴的影响。营养素2021、13、88(本文属于《人类健康咖啡和咖啡因消费特刊》)收到:2020年12月9日接受:2020年12月25日发布时间:2020年12月29日 1.西班牙食品科学研究院(CIAL)(CSIC-UAM)生物活性与食品分析系食品生物科学小组,西班牙马德里28049,CalleNicolásCabrera2.消化系统生理病理学和药理学高级研究小组,NeuGut-URJC,卫生科学学院基础卫生科学系,雷亚·胡安·卡洛斯大学(URJC),阿夫达大学。de Atenas s / n,28022马德里,西班牙3.西班牙国家研究委员会药物化学研究所(Unidad Asociada I + D + i delQuímicaMédica研究所,IQM)联合单位,CSIC Consejo Superior de InvestigacionesCientíficas,西班牙马德里28006应与之联系的作者。 摘要:咖啡是全球消费最流行的饮料之一。烘焙咖啡是数千种生物活性化合物的复杂混合物,其中一些具有许多潜在的健康促进特性,已在心血管和中枢神经系统中进行了广泛研究,而对其他人体系统的关注则相对较少,例如胃肠道及其与大脑的特殊联系,称为脑肠轴。这篇叙述性评论概述了咖啡冲泡的效果;其副产品;及其在胃肠道粘膜上的成分(主要涉及通透性,分泌和增殖),负责其运动功能的肠壁的神经和非神经成分以及脑肠轴。尽管有体外,体内和流行病学研究表明,咖啡可能对消化道产生多种影响,包括对粘膜的抗氧化剂,抗炎和抗增殖作用,以及对外层肌肉的促运动作用,但在很大程度上仍然令人惊讶地未知。需要进一步的研究,以了解咖啡对胃肠道某些健康促进特性的作用机制,并将这一知识传递给行业,以开发功能性食品来改善胃肠道和脑肠轴的健康。 关键词:脑肠轴;咖啡因;咖啡;咖啡副产品;膳食纤维;肠溶肠胃;黑色素黏膜肠系膜1. 介绍在过去的几年中,咖啡已从电影中的反派变成了反常的英雄。 1991年,世界卫生组织(WHO)的专门癌症研究机构国际癌症研究机构(IARC)将咖啡归类为“可能对人类致癌”(第2B组)。该评估是基于有关膀胱癌与咖啡摄入量相关的有限证据进行的。 2016年,经过对1000多个观察和实验研究的重新评估,来自10个不同国家的23位科学家得出结论,广泛的科学文献没有显示咖啡消费与癌症之间有关联的证据[1]。因此,咖啡从第2B组(“可能对人类致癌”)转移到第3组(“无法分类为致癌性”)。此外,IARC还发现有证据表明,喝咖啡实际上可以帮助减少某些癌症(结肠癌,前列腺癌,子宫内膜癌,黑色素瘤和肝癌)的发生[1,2]。“咖啡悖论”包括以下事实:咖啡因会升高血压,但喝咖啡却会降低患高血压的风险[3]。实际上,尽管每天喝咖啡与心脏病的患病率降低有关,咖啡饮用者吸烟的趋势[4]。此外,每天适量饮用3-4杯咖啡可延长寿命,降低全因死亡率[5]。饮用咖啡还与代谢疾病(2型糖尿病,代谢综合症,肾结石和不同的肝脏疾病)和神经退行性疾病(帕金森氏症和阿尔茨海默氏病)有基于证据的有益关联[2]。因此,建议饮用咖啡作为健康饮食的一部分[6,7],因为它含有几种具有治疗特性的生物活性化合物[8]。表1显示了生咖啡,烘焙咖啡和酿造咖啡的化学成分。烘焙过程严重影响了生咖啡豆的成分,在烘焙过程中,尤其发生了美拉德反应。该反应减少了游离绿原酸(CGA)的数量,但形成了其他抗氧化剂化合物,例如将CGA掺入其骨架的黑色素(表1)[9]。这些化合物以及在加工过程中形成的其他化合物,可导致烘焙咖啡豆呈棕色,并有助于咖啡的抗氧化能力[10]。另一方面,美拉德反应产生新形成的污染物,例如丙烯酰胺。欧盟委员会表示,可以通过以下缓解措施降低咖啡中丙烯酰胺的含量:控制烘烤条件或用天冬酰胺酶处理[11]。烘焙咖啡是数千种生物活性化合物的复杂混合物,其中一些具有潜在的促进健康的特性,例如抗氧化剂,抗炎,抗纤维化或抗增殖作用[5]。表1.阿拉比卡咖啡生,烘焙,过滤和冷煮咖啡的化学成分。冲泡程序也将影响最终咖啡杯的生化成分(表1)[30]。咖啡冲泡是一种固液萃取,包括研磨咖啡的吸水,热水中咖啡的溶解以及从废咖啡渣中分离出水提取物。许多变量都会影响咖啡杯的组成,例如咖啡颗粒大小,提取时间,压力,过滤器类型和水温等[31]。在过去的几年中,消费者对“冷冲泡”表现出了极大的兴趣,这种冷冲泡是用冷水(室温或冷冻水)煮制长达24小时的咖啡饮料[32]。最近的研究表明,冷热冲泡的咖啡差异很小但很重要,特别是所得咖啡的总抗氧化能力[21]。尽管冷冲泡咖啡中尚未鉴定出黑色素(表1)[33],但水提取温度会导致这些分子的溶解度不同[34]。因此,需要进一步的研究来完成这种流行饮料的化学表征。无论采用哪种冲泡方法,咖啡及其成分都会对人体产生深远的影响,上面已经提到了其中的一些。对于任何其他食物或饮料,胃肠道是与咖啡接触的第一个身体系统,并且确实会发生局部影响。当然,在吸收了不同的咖啡成分后,还会发生其他胃肠道疾病,这些也值得一提。因此,本综述的第一部分着重于咖啡,其副产品及其成分在胃肠道中产生的影响。这些可能影响胃肠道不同器官的肠壁不同成分(即粘膜,肌肉和内在神经)的功能(图1),因此其作用与胃肠道癌,炎症和粘膜有关将讨论功能(通透性,分泌性)以及运动功能。 图1.(A)前胃,空肠回肠(小肠的最长部分)和结肠壁的组织学外观。 (B)在有意识的大鼠中,在给予胃内钡剂后的不同时间点,通过射线照相方法观察大鼠胃肠道的器官。由于大鼠不呕吐,钡只能向肛门方向发展:对比1小时后,可以区分大鼠胃的两个部分(前庭胃和体)以及十二指肠和空肠回肠。对比后4小时,仍然可以部分看到胃和小肠,但是盲肠充满了对比。造影后8小时,几乎看不到胃和小肠,但盲肠充满造影剂,结肠内有一些粪便颗粒。 (C)显示肠神经系统外观的显微图像:组织学切片中大鼠回肠壁内的粘膜下层(SMP)和肌间神经丛(MP)的位置被苏木精/曙红(H / E)染色;解剖粘膜,粘膜下层和环形肌,仅留下纵肌层并附有肌间神经丛的中,右,整装或“片状”制剂(来自豚鼠回肠);对整个制剂进行免疫组织化学处理,以显示所有带有泛神经标记HuC / D的神经元(中),或对神经元一氧化氮合酶(nNOS)具有免疫反应性的神经元的特定亚群,其躯体和神经纤维都可以不是核,可以区分(正确)。 此外,胃肠道通过所谓的脑肠轴(或肠脑轴)在功能上与大脑连接[35]。而咖啡及其影响大脑中的成分已被深入研究,脑肠轴上的成分受到的关注相对较少。但是,关于心理因素与肠道感觉,运动和免疫功能之间的联系,已经积累了大量证据[36]。因此,现在已经认识到,健康的脑肠轴是情绪和情感稳定,对压力的适当反应以及内脏疼痛调节的关键[37]。实际上,人们对肠胃相互作用在胃肠道疾病中重要性的认识的提高甚至引起了胃肠病学领域的发展[38,39]。因此,本篇综述还简要介绍了咖啡,咖啡副产品及其成分对脑肠轴的影响及其在该领域的可能作用。 2.咖啡和胃肠道:专注于粘膜为了理解其假设的刺激或抑制特性及其作用机理,已经研究了咖啡对胃肠道的影响多年。通过众多流行病学研究已经解决了这个问题。尽管有证据表明咖啡可能与某些癌症的风险降低有关,但这些研究主要集中在肿瘤疾病上,结果相矛盾。确实,系统的审查发现咖啡对肝癌,肝细胞癌和乳腺癌具有保护作用。然而,咖啡似乎增加了患肺癌的风险,而咖啡与其他癌症(如胰腺癌,膀胱癌,卵巢癌和前列腺癌)之间的关系尚存争议[40,41]。关于消化道癌症,大多数荟萃分析显示咖啡与结直肠癌(CRC)风险之间存在中等或剂量-反应-负相关[42-48]。特别是,在以色列北部地区[49]或在日本女性中[50],发现咖啡的摄入与CRC风险呈反比关系。此外,最近的一项前瞻性观察性研究包括1171名患者,其中大多数患有转移性CRC,对于每天喝四杯或更多杯咖啡的患者,其生存期最多可增加8个月[51]。在评估有时可能会产生冲突的结果时,与种族或性别相关的差异似乎很重要。因此,Micek等人进行了荟萃分析。 (2019)[52]没有发现咖啡摄入量与CRC风险之间存在关联的任何证据,但当使用混合人群时,在从未吸烟者和亚洲国家中,咖啡摄入与结肠癌风险降低相关,并且与不考虑女性,永不吸烟者和欧洲国家,普通人群患直肠癌的风险增加。同样,对24项关于CRC的前瞻性研究的系统评价和荟萃分析表明,咖啡对男女混合使用以及仅对男人有保护作用。关于种族,在欧洲男性和亚洲女性中发现了重要的保护性联系。不含咖啡因的咖啡在男人和女人中都表现出保护作用[53]。相反,其他研究人员没有发现咖啡的保护性证据。值得一提的是Dik等人进行的EPIC队列研究。 (2014)[54],涉及超过40万欧洲人,并且显示咖啡消费与CRC之间没有关联。 Park等。 (2018)[55]在一项涉及4096名患者的大型前瞻性多种族队列研究中,也未发现CRC与咖啡摄入量之间存在关联。同样,瑞典妇女的前瞻性研究发现,CRC与每天摄入四杯或更多杯咖啡之间没有任何关系[56]。在英国人群中,同一类型的研究还发现咖啡和胃,小肠或结直肠癌之间没有关系[57]。在这方面,胃癌的结果难以评估。一些荟萃分析证实咖啡可以降低患胃癌的风险[58],但在其他情况下,结果却是矛盾的,直接取决于患者的性别[59,60]或所研究的胃部,直接咖啡摄入与胃card门癌之间存在相关性,而影响胃的其他癌症则没有[61]。同样,与食道癌的关系也不清楚,因为有系统的评论认为咖啡摄入量与这种癌症的发病率之间的关系不存在[61,62],或可归因于饮料的温度[63]。 ]。在相反,一项比较咖啡和茶的荟萃分析发现咖啡和食道癌之间存在显着相关性[64]。关于非肿瘤病理的流行病学研究结果也存在争议。一些荟萃分析表明,整体咖啡似乎并不是造成慢性胃食管反流病(GERD)的原因[65],而一项意大利研究则发现咖啡对巴雷特食管(BE)患者有不良影响[66]。相反,在美国进行的一项调查并未发现咖啡摄入与BE风险之间有任何关联[67]。上述可变性可能是由于许多原因造成的,包括性别,种族,生活方式以及咖啡中存在的多种生物活性化合物。实际上,很快就变得很明显,咖啡因被认为是咖啡的主要成分,并不是咖啡中唯一的生物活性化合物。特别是在上世纪下半叶的发现中,即使不含咖啡因的咖啡也会引起胃酸分泌的增加,并降低下食道括约肌的能力[68,69],这导致了对这种情况的调查。其他咖啡衍生化合物的生理作用。如上所述,咖啡的成分取决于许多因素,例如咖啡的来源,制备方法(水蒸气温度,烘烤等),从而对生理和微生物组产生不同的影响[41,70-73]。因此,在动物模型或志愿者体内进行的研究,或在分离的细胞体外进行的,分别评估咖啡中各种化合物的作用的研究,远少于流行病学报告。新陈代谢的种间差异或测试的不同剂量对所得结果有很大影响。但是,尽管仍然不完整并且以某种方式导致矛盾的结果,但是研究咖啡表现出咖啡作用的机理以及引起咖啡作用的特定化合物的努力已经为这个问题提供了一些启示,如下所示。2.1.体外研究2.1.1.咖啡自1980年代以来,已有几项研究调查了咖啡或其衍生物是否具有致癌作用。这些研究确定了各种咖啡制剂中潜在有害的化合物,例如过氧化氢(H2O2)。然而,这些研究是在缺乏过氧化物酶体酶的细菌模型中进行的,因此这种假定的致癌作用不适用于人类。也没有发现咖啡中负责这些潜在有害作用产生的化合物[74,75]。同样,已经在咖啡制剂中研究了抗炎特性,例如咖啡“木炭”,这是一种通过烘烤生干咖啡并将其研磨成粉末而制成的草药。在这种情况下,肠细胞的屏障功能增强,炎症介质如白介素(IL)IL-6,IL-8,肿瘤坏死因子(TNF),甲基接受趋化蛋白1(MCP-1)和前列腺素(PG)E2被抑制[76]。但是,这种制剂还可以保存咖啡中的大多数化合物,因此很难确定引起这些作用的特定分子。顺带一提,将CaCo2细胞(人结肠直肠腺癌细胞系)与常规,过滤,脱咖啡因或速溶咖啡一起孵育会诱导尿苷二磷酸(UDP)葡萄糖醛糖基转移酶(UGT1A)的转录,这是一种间接蛋白质抗氧化性能。在这种情况下,负责这种上调的分子仍然难以捉摸[77]。2.1.2.咖啡因生物碱咖啡因是研究最多的咖啡成分之一[41]。尽管需要很高剂量的咖啡因才能证明它们具有抗氧化特性[78]。相反,当使用生理浓度时,咖啡因通过氧自由基吸收能力测量未显示任何抗氧化活性。但是,使用1-甲基黄嘌呤时,抗氧化活性显着和1-甲基尿酸,是人体中咖啡因的主要代谢产物。这些化合物的抗氧化作用分别相当于抗坏血酸和尿酸产生的抗氧化作用[79]。但是,这并不排除其他机制的参与。结肠细胞系也已用于评估咖啡因的抗炎活性。在有咖啡因的情况下,人结肠直肠腺癌细胞系CaCo2和3T3-L1脂肪细胞的共培养表明,咖啡因抑制炎性细胞因子白介素(IL)IL-8和纤溶酶原激活物抑制剂1(PAI-1)的分泌并降低脂肪在脂肪细胞中积累,而对3T3-L1细胞没有影响[80]。与此相关的是,还共培养了CaCo2,杯状细胞和巨噬细胞细胞系,以研究其对与炎症性肠病(IBD)相关的机制的影响。实际上,最近有关咖啡因的研究倾向于显示相反的结果。此外,在细胞周期从G1到G2的过渡过程中,咖啡因还显示出对RKO细胞放射疗法的敏感性增加[81]。咖啡因还可以与抑制基因磷酸酶和张力蛋白同源物(PTEN)协同作用,从而抑制细胞生长并诱导几种人CRC细胞系中的细胞凋亡,而不诱导成纤维细胞中的凋亡。这种作用是通过丝氨酸/苏氨酸激酶(AKT)激酶途径的下调和p44/42MAPK途径的调节而诱导的,即使在没有p53的情况下也是如此[82]。此外,咖啡因抑制在低氧条件下培养的HT29 CRC细胞中的低氧诱导因子1(HIF-1)。它还降低了血管内皮生长因子(VEGF)启动子的活性和IL-8的表达,而IL-8的表达是肿瘤血管生成所必需的。在这种情况下,咖些差异。还必须考虑的是,体外研究可能无法完全反映多细胞生物中的复杂关系,也不能最终反映出体内不同组织的剂量。关于这一点,Guertin等。 (2015)[87]研究了咖啡饮用者中大量的血清代谢产物,发现某些咖啡因相关代谢产物与CRC呈负相关。需要进行体内实验研究,以了解咖啡因与癌症之间确切关联的机制。2.1.3.多酚类多酚是咖啡中存在的其他重要化合物。它们包括不同浓度的CGA,包括奎宁酸和反肉桂酸,咖啡酰奎尼酸(CQAs),尤其是5-O-咖啡酰奎尼酸(5-CQA)以及CGA的一种代谢物咖啡酸(CA) ),是研究最多的[70,73]。多酚在低咖啡因的咖啡和普通咖啡中均具有很强的抗氧化性能,并且还可以与CGA浓度成比例地降低培养成肌细胞中促炎因子的激活,例如核因子-kβ(NF-kβ),其中普通咖啡的效力是低咖啡因的咖啡的两倍[ 88]。同样,赵等。 (2008)[89]证明,5-CQA可能以剂量依赖的方式在人肠上皮CaCo2细胞中阻断H2O2或肿瘤坏死因子受体(TNF-R)激活诱导的IL-8分泌。这些作用很有趣,因为促炎因子的过度表达和活性氧(ROS)的增加与DNA损伤以及重要疾病(例如癌症)的发病机理中涉及的多种细胞信号通路密切相关[41,90]。此外,5-CQA尤其是CA抑制细胞生长啡因可能会通过抑制其磷酸化来抑制诸如细胞外信号调节激酶(ERK1 / 2),p38和AKT等激酶。此外,它还抑制了腺苷A3受体刺激的细胞迁移[83]。咖啡因的这些作用在不同来源的细胞中或与其他分子协同施用时可能不同。因此,咖啡因不能抑制JB6 P上皮细胞系中ERK的磷酸化以及随之而来的表皮生长因子(EGF)和H-Ras诱导的肿瘤转化[84]。同样,咖啡因激活了Colo-205 CRC细胞系中的ERK信号通路,导致抗凋亡蛋白髓样细胞白血病1(Mcl-1)的增加和对紫杉醇的更高耐药性[85]。尽管在这种情况下与咖啡因的孵育仅持续了20小时,但HT-29细胞系却未观察到这种效果[86]。可以考虑细胞系的特殊性,暴露时间和/或测定的咖啡因浓度来解释这HT-29 CRC细胞系从细胞周期的G1期到G2 / M期的过渡[91]。与此相关的是,已经证明CA影响同一细胞系中细胞周期蛋白D1的表达。细胞周期中G1 / S过渡需要细胞周期蛋白D1,而在许多癌症中细胞周期蛋白D1过度表达。该蛋白的水平通过信号转导子和转录激活因子5(STAT5)的过表达以及激活转录因子2(ATF-2)蛋白表达的降低而下调[92]。 STAT5的过表达可能导致细胞凋亡增加,而ATF-2表达降低则可能具有抗癌作用[73]。与咖啡因一样,已证明CA对ERK磷酸化的抑制具有直接作用,其结果是JB6 P1细胞的肿瘤转化的下调[84]。CA还可以诱导细胞凋亡并降低其他结直肠细胞系(如鼠CT26细胞系)以及来自不同来源的细胞系(如白血病或内皮细胞)的侵袭性[73]。相反,崔等。 (2015)[86]没有发现CA或CGA对同一HT-29细胞系具有任何抗增殖作用。然而,在这种情况下,测定的孵育时间较短([86]中为20小时,[91]中为48-96小时)。影响蛋白质表达的另一个重要因素是表观遗传标记。这种调节的关键因素之一是在DNA中添加了甲基。 5-CQA和CA已成为体外DNA甲基化的强抑制剂。当测试更高的浓度时,DNA甲基转移酶的抑制率达到正常值的80%[93]。这种效果的含义尚待确定。最后,多酚还可能对上皮通透性产生一定影响。T84CRC细胞安装在Ussing型腔室中,并在生理浓度的羟基肉桂酸和类黄酮存在下孵育,表明其中一些(例如阿魏酸和异阿魏酸)显着增加了紧密连接复合物的蛋白质表达(zonulin 1( ZO-1)和claudin-4),但减少其他蛋白,例如occludin。相反,CA对ZO-1或occludin的转录没有影响[94]。2.1.4.二萜二萜是脂肪酰基酯,作为咖啡生物活性化合物也引起了人们的注意。它们在咖啡豆和未过滤咖啡中的含量可变,但在过滤和可溶咖啡中的含量很小[41,73]。研究最深入的是卡赫威醇,已被证明是体外细胞活力的有效抑制剂。与咖啡因,CA或CGA相比,HT-29 CRC细胞在以较低的浓度暴露于kahweol后会降低其生存能力。这种作用由促凋亡的胱天蛋白酶3的增加和抗凋亡的Bcl-2和磷酸化的AKT的表达以剂量依赖性的方式介导[86]。还已经在其他结肠直肠癌细胞系(HCT116,SW480和LoVo)中观察到了kahweol的凋亡作用。在这些细胞系中,除了HT-29系外,kahweol还刺激活化转录因子3(ATF-3),该因子已知在CRC中起肿瘤抑制作用,下调细胞周期蛋白D1并增强p53蛋白。抑制ERK1 / 2和糖原合酶激酶3β(GSK3β)激酶可阻断kahweol介导的ATF-3表达[95]。因此,同一作者发现,kahweol在不影响其mRNA水平的情况下降低了细胞周期蛋白D1的浓度。蛋白酶体的降解可能是这种降低的原因,因为蛋白酶体抑制剂阻止了细胞周期蛋白D1蛋白水平的降低。据此,kahweol诱导ERK1 / 2,c-Jun N端激酶(JNK)和GSK3β激酶的激活,导致细胞周期蛋白D1磷酸化,从而导致蛋白酶体降解。在正常结肠细胞系CCD-18-Co中未观察到kahweol的抗增殖作用[95]。另外,kahweol可能会显着减弱热激蛋白70(HSP70)的表达,从而导致细胞毒性作用,这种细胞在与伴侣抑制剂雷公藤内酯醇孵育时会增强[86]。 NF-kβ是与炎症和免疫反应有关的另一个关键调控因子,在许多癌症中均过表达[96]。 Kahweol通过抑制IkB激酶(IKK)活性来阻断NF-kβ的活化。同样,kahweol和cafestol(另一种二萜)均以剂量依赖性方式显着抑制促炎性环氧合酶2(COX-2)蛋白及其mRNA表达[97]。卡瓦酚和咖啡酚的抗氧化特性也有已在非消化性细胞类型(例如肝细胞,神经元或成纤维细胞)中得到证实,在这些类型中,它们对H2O2诱导的氧化性DNA损伤具有高度保护作用,并通过不同的机制(例如诱导细胞保护性酶)产生超氧自由基例如血红素加氧酶-1(HO-1)[98-100]。2.1.5.美拉德反应产物:黑色素最后,在焙烤过程中形成的黑色素表现出有趣的促进健康的特性。确实,咖啡类黑素具有多种生物学活性,例如抗氧化剂,抗微生物,抗龋齿,抗炎,抗高血压和抗糖化活性[10]。可以认为,具有抗氧化性能的黑色素含量取决于烘烤条件[15]。这些抗氧化特性可能高于其他来源,如在体外模拟胃消化模型[101]或其他非消化系统[41,102]中抑制脂质过氧化的能力所表明的。但是,涉及此类功能的确切机制仍有待详细研究。2.2.体内研究2.2.1咖啡在动物中进行的首次研究似乎证明了咖啡的潜在保护作用。确实,已经证明,用咖啡长期喂养啮齿动物在某些情况下(如在胃中)自发性肿瘤的发生率没有增加,但有所减少[103,104]。同样,咖啡可以保护大鼠免受结肠中1,2-二甲基肼等致癌物质的影响,尽管不在小肠中[105],并且还诱导了大鼠抗氧化剂和细胞保护性转移酶UGT1A的14倍诱导作用。转基因小鼠的胃[77]。但是,其作用机理尚未完全阐明。这样,在结肠癌患者中每天喝咖啡超过1杯咖啡与ERK的显着减弱有关,ERK是直接参与结肠癌发展的一种激酶[84]。另一方面,已经发现咖啡消费者和非消费者在与咖啡相关效应有关的基因的DNA甲基化水平方面存在差异。咖啡的潜在表观遗传作用也可能由性激素和细胞类型介导,因为它仅在从未使用过激素治疗的女性中以及从血液而不是唾液中的单核细胞中观察到[106]。咖啡还增加了健康志愿者对蔗糖的通透性,从而与胃粘膜的短暂损伤有关[107]。最后,事实证明,即使每天仅喝3杯咖啡,食用咖啡也会对实验动物和人类的肠道菌群产生影响。大肠杆菌,肠球菌,梭状芽孢杆菌和拟杆菌的数量减少。已经报道了乳杆菌属物种的上调。和双歧杆菌属。人口。在任何情况下,都需要确定咖啡引起的这些变化对微生物群的确切影响[108-110]。点击:查看更多医学文章 查看更多生物学文章 咖啡及其成分对胃肠道和脑肠轴的影响(中 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-27 20:14:00