福昕翻译

>

翻译学堂

>

大火前后的巴黎圣母院大教堂的声学调查

大火前后的巴黎圣母院大教堂的声学调查






布莱恩·F·G。卡茨*和安东尼·韦伯

法国巴黎CNRS Sorbonne大学Jean Le Rond d´Alembert研究所UMR7190,法国; antoine.weber@dalembert.upmc.fr

*通讯:brian.katz@sorbonne-universite.fr

 

收到:2020年9月27日;接受:2020年10月29日;发布时间:2020年11月6日


摘要:巴黎圣母院大教堂是世界上最著名的礼拜场所之一。它的体积大,加上相对裸露的石头结构和大理石地板,导致相当长的混响时间。大教堂在2019年遭受大火,主要损坏了屋顶和拱形天花板。尽管此空间臭名昭著,但有关该空间的声学参数的已发布数据很少,这些数据并不一致。恢复了1987年的存档测量记录,发现其中包括几次气球爆炸。 2015年,针对虚拟现实项目进行了测量会议。这两个阶段的结果之间的比较显示,在开火前,混响时间略有减少(8%)。火灾发生1年后,最近在施工现场进行了测量。与2015年的数据相比,混响时间显着减少(20%)。本文介绍了这些测量的初步结果,并提供了有关这具历史悠久的朝拜空间在2019年大火之前和之后的声学记录。

 

关键词:室内声学测量巴黎圣母院;混响时间文化遗产


1. 介绍

礼拜场所的声学已成为数十年来研究的主题。由于其巨大的规模,这些空间已在多个世纪以来用于文化和宗教活动。这样的空间经常表现出声音异常(例如,耳语的画廊和耦合的体积)。吉隆(Girón)等人综述了这项研究的重要部分。 [1],讨论了不同的实验程序,结果及其理论解释。在具有重要历史意义的空间中进行了许多著名的研究:圣彼得大教堂[2],圣索非亚大教堂(Haghia Sofia)和苏莱曼清真寺(SüleymaniyeMosque)[3],圣约翰洗礼池[4],圣日耳曼德佩雷斯修道院[5]和圣保罗大教堂[6]。

巴黎圣母院大教堂(CathédraleNotre-Dame de Paris)是世界上最著名的礼拜场所之一。这座中世纪大教堂被广泛认为是法国哥特式建筑的最好典范之一。大音量加上其巨大的裸露石灰石和大理石表面,导致长的混响时间。尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。

巴黎哥特式大教堂建于12世纪末,成为欧洲音乐创作的象征地,历史学家称其为“巴黎圣母院”。文件证明了这一时期的音乐活动,并且可以认为这种巴黎复音的惊人发展与1182年新合唱团举行的礼拜式组织相吻合。巴黎圣母院大教堂的法令颁布于1198年和1199年,主教Eudes de Sully证明了大众,办公室和贝纳迪卡莫斯·维斯珀多米诺骨牌的两种,三种和四种声音的实践[7,8]。

 

我们很幸运有一位英国校长撰写的历史性文字[9],描述了这座大教堂合唱团1275年左右的音乐习惯,在此之前,器官和半即兴的传导性的声音可能会朝后殿升起在各种手稿中都有记载,这些手稿证明了Magnus liber organi的丰富性[10](巴黎圣母院在12世纪和13世纪之交时使用的拉丁语“器官大典”)。几个世纪以来,这种方法不断发展,随着格里高利旋律的出现,这些旋律逃离了封闭的合唱团,或者随着游行队伍而流通,风琴,铃铛的声音和法佛对位的复调作品混合在一起。 “ 1498年任命安托万·布鲁梅尔(Antoine Brumel)带来了新鲜的空气:费拉拉公爵未来的合唱团指挥官带来了佛朗哥-佛兰德和弦的最好和最新的复音” [11]。音乐史将铭记安德烈·坎普拉(AndréCampra),让·弗朗索瓦·拉洛埃特(Jean-FrançoisLalouette)或让·弗朗索瓦·莱苏厄尔(Jean-FrançoisLesueur)等伟大的大师和作曲家的名字,他们在革命时期后组成了著名的加冕典礼,供拿破仑进入大教堂1804年,以及加冕大礼的各种作品。

2019年4月15日,巴黎圣母院大教堂的阁楼发生火灾。由此产生的损坏摧毁了屋顶,并在尖顶和其他碎屑掉落时在拱形天花板上留下了三个大孔。随着修复工作的继续,在大教堂的结构和材料方面进行了大量的记录工作,这项工作介绍了近期的工作,以记录大教堂的室内声学状况,对火灾前和火灾期间采集的数据进行了分析。重建过程。这项工作的某些要素先前已经在科学会议上提出过[12]。

2. 已发布的声学数据

尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。 Hamayon [13]提出了混响时间估计作为八度频段的函数[125至4000 Hz:8.5、8.0、7.5、6.0、4.5、2.7 s]。 Mercier [14]提出的建议略有不同

混响时间值[125至4000 Hz:8.5、8.2、6.5、6.2、4.7、2.5 s]。两项研究都仅介绍了混响时间,而没有任何参考或测量协议信息。

3. 材料和方法:20世纪和21世纪的测量

 

3.1. 1987年的历史数据

档案记录(1987年)是从有关一个新器官的声学研究中恢复的[15],其中包括几个气球破裂。

测量协议—图1a显示了1987年带源-接收器(SR)位置的测量的测量计划。尽管采用了使用不同刺激的多种技术,但由于缺少刺激细节(例如,消声信号,扫描刺激参数),仅可利用气球爆裂源。从源位置1记录了三个气球爆炸,从源位置2记录了1个气球爆炸。这些位置对应于大教堂的“相对”源位置[16],其中S2在变位子和祭坛区域的中心附近。 S1在讲坛附近,更靠近公共区域的中心。

测量设备的输入-用13个全向麦克风记录声音,这些麦克风连接到多轨线对线录音机(Tascam)。虽然不是理想的全向声源,但气球爆裂在某些情况下还是有用的工具,它提供了便携式脉冲源[17]。记录从模拟磁带上数字化。

1987,2015和2020届会议的测量计划.png

图1.巴黎圣母院大教堂(a)1987,(b)2015和(c)2020届会议的测量计划。位置居中于编号源(S#(红色))和麦克风(#(蓝色和绿色))标签下,或在所测量的网格过于密集的点处。 2020年计划(c)还在阴影区域指示了无法放置测量设备的脚手架(黄色),人为禁止区域(红色)和禁止区域的受阻碍/损坏的地面(蓝色)。

3.2. 2015年的详细测量

在2019年大火发生前的将近4年的2015年4月13日晚上,在一次小型音乐会演出之后进行了一系列声学测量。

测量协议-图1b显示了测量计划,突出显示了2015年测量的S-R位置(请参见图2a中的照片)。源位置反映了1987年的测量结果,以及代表合唱团的S3和1987年测试的S4,尽管在进行测量后没有发现气球爆裂。在2个正弦扫描的三个测量组中,执行了麦克风1–8更改位置的操作(高度为1.5 m,这些麦克风的更改位置由测量位置后面的字母表示)。由于外部噪声过大,首次测量重复进行了两次,共87次,形成了4组测量值。麦克风9-16悬吊在天花板上(88层上方7 m,以捕获混响场供唱片工程师用于音乐会录音),因此89保持在同一位置,因此记录了八个类似的RIR。这些重复的90次测量允许研究随时间变化的声学响应的稳定性,其中91次解决了温度变化的细微影响[18]。在最后一次扫描测量之后,在每个源位置记录一个气球爆炸,而接收器在最终位置。

2015年的状况照片,突出显示了测量期间测量设备,地毯滑道和小型音乐会立管.png

(a)


2020年,突出显示在测量过程中由遥控机器人,障碍物和中殿的总体空状态拉动的麦克风三脚架.png


(b)

图2.(a)2015年的状况照片,突出显示了测量期间测量设备,地毯滑道和小型音乐会立管; (b)2020年,突出显示在测量过程中由遥控机器人,障碍物和中殿的总体空状态拉动的麦克风三脚架。

测量设备的输出-音频输出被发送到放大器(SAMSOM,美国Servs120a型,希克斯维尔),并依次发送到四个微型十二面体声源(三博士,3D-032型,日本东京)。信号-激励信号基于扫频正弦法。扫描频率从20到20,000 Hz,在20 s内呈指数增长。但是,由于这些特定扬声器的频率响应,在250 Hz八度频段以下的能量不足,无法进行分析。使用DAW软件Reaper和声卡(RME,Fireface 800,德国海姆豪森,德国)以44.1 kHz的采样率播放扫描。

测量设备的输入-混响信号是由两个测量链记录的,因为测量的会话是与音乐会录音设备一起进行的。

(I)用5个全向麦克风(4个DPA(丹麦Alleroed),4006型(1-4)和1个Schoeps(德国卡尔斯鲁厄)MK5型全向麦克风(5)以44.1 kHz的采样率记录扫描。 ,1个虚拟头(KU-80,配备DPA 4060)和1阶Ambisonic麦克风(Core Audio,Tetramic,Teaneeck,NJ,美国),所有这些都使用声卡(RME,Fireface 800)录制。 )使用其他11个全向麦克风(6个DPA 4006型(11–16),5个Schoeps MK5型全向麦克风(6–10))和声卡(RME)以48kHz的采样率记录扫描,Micstacy)。


3.3. 2020年重建后大火的测量

准许进入重建现场,并于2020年6月30日进行了声学测量。由于工作现场的限制,只能进入某些区域。由于存在掉落碎片的风险,中殿和中庭已禁止人员进入,如图1c所示。链节/坛大理石地板的中央部分被尖顶掉落损坏。合唱团区域杂乱无章,由救援队整理,因此完全无法进入。许多侧面祭坛已被用来存储物体。还安装了用于移除器官的脚手架和围绕中殿的保护屏障(建筑围栏和腰高的穿孔金属板)。见图2b中的照片;在线(https://youtu.be/YLi7ASosKvw)上有一段简短的视频记录了测量会话。

测量协议-图1c显示了测量计划,突出显示了2020年测量的S-R位置。在给定访问限制的情况下,选择扬声器的源位置S1,使其尽可能接近先前测量中使用的位置。源位置S2用于手持式脉冲源,因为这是最接近S1的位置。遥控机器人(用于隧道检查)被用来拉动安装在三脚架上的麦克风。麦克风位置1-5代表第一测量轨迹。由于剩余的时间,机器人的返回轨迹(位置6-19)允许更密集的分布。从位置S1开始进行抽奖。

测量设备的输出-声源是电池供电的十二面体声源(Look Line,S103 ACDC,意大利Massa Finalese),配备有自己的内部放大器和扫频发生器,远程控制,位于声源位置S1。激励信号是内部20 s扫描正弦波。在禁区的极限处,从源位置S2进行了几次补充冲动刺激,手枪开枪射击和气球爆裂。

测量设备的输入-混响的信号记录在各种便携式记录设备上,以限制由于机器人操作而引起的布线和混乱。除了使用一对MS(Zoom,H6)外,还使用两个与便携式录音机(Zoom,H6,东京,日本)连接的全向麦克风(Bedrock,BAMT1 1/2”,荷兰代尔夫特)进行录音。将两个3D麦克风(Core Audio,Tetramic和Octomic)记录到便携式录音机(Zoom,F8)上。最后,使用了两个自主3D麦克风(Zoom,H3-VR),一个与360°摄像头(三星,Gear360,韩国首尔)配合使用。源/接收器的高度为1.7 m,受限于用于放置设备的带轮三角架设备。

3.4. 后期处理

随后的反卷积扫描正弦刺激,采样率转换和后处理步骤在MATLAB中执行。根据我们的内部MATLAB IR分析(IRA)工具包,根据ISO 3382标准对RIR进行了分析[19]。

3.5. 建筑细节

巴黎圣母院长约130 m,宽48 m,高35 m。

在与巴黎圣母院办公室的电话交谈中,确认在几个区域安装了地毯滑道,并且在与前两个海湾相邻的两个礼拜堂(侧面壁or或海湾)中增加了两个确认亭。在这段时间里因此,1987年和2015年之间的区别主要是安装了地毯滑轨(见图2a和3a)。从2015年到2020年,大火后的主要区别是拆除地毯滑道,拆除长椅和拱形天花板上的孔。图3b显示了修复团队在天花板上报告的主要孔洞。使用2D投影(忽略高程拓扑),建筑图纸中的孔大小估计为263 m2。根据上述尺寸,这相当于包围盒表面积的1%。

突出显示座位位置(黄色)和增加的地毯流道(红色)的计算机模型.png

(a)

指出拱形天花板(2020)中主要孔洞(红色)的建筑图.png

(b)

图3.巴黎圣母院大教堂的示意图突出了特定的表面。 (a)突出显示座位位置(黄色)和增加的地毯流道(红色)的计算机模型; (b)指出拱形天花板(2020)中主要孔洞(红色)的建筑图。

4. 测量结果

 

4.1. 声学参数

由于三个测量会话期间信源/接收器位置的变化以及2020年测量条件的巨大差异,此处介绍的初步分析重点是混响时间测量,而不是对本地建筑特征更敏感的参数。在所有三种测量条件下,通过全向麦克风计算平均混响时间(T20),如图4a所示。

接收机平均混响时间汇总,衰减曲线示例和耦合体积分析.png


图4.接收机平均混响时间汇总,衰减曲线示例和耦合体积分析,(a)具有标准误差棒的全向麦克风的平均混响时间(T20)。 2020年的结果显示了扫掠刺激(S1)和脉冲源枪击(S2,Rec位置1-5)的结果; (b)八度带滤波的RIC衰减,标准化,优化的SNR截断,2020扫描激励数据集的示例; (c)全斜率衰减500Hz-八度频带分析分布,显示RIC衰减曲线中所识别弯曲点的早期和晚期混响时间以及相对时间(BPt)和电平(BPdB)([20],以获得参数详细信息)。带刻度的箱线图显示了数据分布的中位数,95%置信区间,第25和第75个百分位数。

 

2020年测量协议采用了非同步音频输入/输出设备。虽然设备之间精确时钟速率的差异可能会导致解卷积信号的时间失真,但Hak和Hak [21]已表明,与MLS信号相比,这种误差对扫频刺激的影响较小。另外,在该研究中发现典型的时钟误差足够小,以致混响时间的预期偏差将小于百分之几。为了验证异步措施,还从源位置S2计算了2020年脉冲源枪射击的混响时间。结果表明,两种测量方法之间的差异在不同位置和频率的标准误差范围内有所不同,除了250Hz频段显示稍高的值(增加7%)和125 Hz频段缺乏足够的分析能量。

从整个测量时段的混响时间来看,从1987年到2015年平均降低了8%。2015年和2020年之间的比较显示,整个频段的降低显着得多,T20的平均降低了20%。

仔细检查RIR可以提供其他信息。图4b中显示了用于计算上述房间声学参数的RIC示例。衰减曲线显示出一个陡峭的阶跃或“悬崖”响应,正如在露天剧院中所观察到的[22]。考虑到除了光滑的空地板以外没有近端反射表面,这是合理的。在响应的较早和较晚部分之间,衰减率会出现一些细微变化,这表明体积行为呈轻微耦合。使用行进线多斜率分析方法对此进行了进一步分析[23,24]。为简便起见,此分析仅限于500 Hz倍频程滤波的RIR,


并使用可比较的源和接收器位置与2020年缩小的测量区域将2020年的测量结果与2015年的子集进行比较。此方法除了可以描述时间和水平上的弯曲点外,还可以估算RIC的早期和晚期衰减率。相对于RIR发作。由于耦合体积衰减的行为随复杂体系结构中的源和接收器位置而变化[25],因此将比较每个参数的结果分布,比较2015年和2020年的RIR,比较下半部分的源和接收器位置中殿(两个数据集中的共同测量区域)。

非线性衰减分析的结果(如图4c所示)反映了如图4a所示的混响时间的总体减少,同时也突出了存在非线性衰减时使用ISO参数的问题。结果显示,早期和晚期衰减率均下降,表明主要和次要“体积”均减小。在Notre-Dame的情况下,对不同声音音量的界定不如在耦合混响音乐厅设计中那样明显和明显。但是,由于其较高的天花板,可以将Transept与其他空间完全不同,而侧面区域(Transept除外)具有多个水平。由于拱形天花板中的孔位于收发器区域内(图3b),但是其中一个孔位于源/接收器区域上方,因此可以想象这种损坏会影响多个声学“体积”。在这些体积中衰减率的降低还导致弯曲点时间的减少,并在较小程度上降低了水平,并且应注意,所有这些参数都与声耦合条件有关。 2015年情况的后期混响时间的可变性可能归因于空间的复杂性以及各种声学区域,这不仅导致了简单的双斜率衰减,而且导致了更高阶的耦合。需要进行进一步的分析和测量以进一步检查该假设。

最后,根据Luizard等人的观点,考虑可感知的可检测性。 [20],耦合条件下早期衰变率的平均正差(JND)约为7%至10%,是晚期衰变的两倍。同样,BPt的JND约为15%到30%,涵盖了此处观察到的差异。这样,可以确信地说声学条件的差异是清晰可听的。

4.2. 空间分析

空间房间脉冲响应(SRIR)可用于房间声学的比较方向分析。这里选择的方法是一种参数化方法,即空间分解方法(SDM)[26]。基于这样的假设,声场可以描述为一连串的平面波,因此SRIR可以分解为一组离散的压力值及其对应的到达方向(DOA),即图像源为归因于每个时间样本。为此,将一个以目标样本为中心的小时间窗口应用于SRIR,并通过最小二乘解估计到达时间差(TDOA)的DOA。理想情况下,使用阵列中心的全向脉冲响应来分配压力值。该方法已用于音乐厅SRIR的分析和声音化[27],也用于其图形表示[28]。这些工具在MATLAB软件包SDM Toolbox [29]中实现。

SDM分析应用于使用相同3D四面体麦克风阵列进行的2015年和2020年测量。使用A格式信号(代表接近重合心形麦克风的四面体阵列)估算DOA。对于所使用的麦克风,将分析窗口设置为最小允许大小,该大小是脉冲通过阵列传播所需时间的两倍,对于所使用的麦克风而言,大约为0.4毫秒。为了获得麦克风中心的压力值,这是SRIR的图形表示所必需的,使用了后处理的B格式全向W通道信号,因为这种分配应应用于与方向无关的RIR。图5中显示了类似的源-接收器对位置的中值平面和侧面平面的结果。需要注意的是,在2020年,没有座位,地板空着。相比之下,2015年既有长椅,也有一些舞台上升器,椅子和乐谱架代表着音乐表演(见图2a)。在比较这些结果时,可以进行一些观察。

SDM分析:状态2015,Src S2–Rec 1c.png

(a)

SDM分析:状态2020,Src S1.png

(b)

图5. SDM分析显了从0 ms到[10,50,100,200,300,500,1000] ms的累积能量极性分布曲线,带通滤波了100 Hz至5000 Hz,滑动平均值为5°。指示了源位置(红点)。 (a)SDM分析:状态2015,Src S2–Rec 1c; (b)SDM分析:状态2020,Src S1,建议16。从CNRS/MC为修复巴黎圣母院而采取的科学行动的数字平台上获得的纵向截面,来源:Andrew Tallon进行的3D激光扫描(2016)。


关于直接声音,2015年显示的声音既局部又清晰(略微升高,这与它的位置以及当时的声源都升高相对应)。地板反射不可见,可能是由于椅子和长椅的存在。到2020年,直接声音“波瓣”变得更宽广,不那么尖锐。检查侧视图图,直接声音(实际上是响应的初始0 ms到10 ms窗口)呈现出略微负向的升高。这可能是由于平坦的地板空了,在10毫秒的分析窗口内对地板的强烈反射进行了计数,从而降低和扩大了响应的早期部分。

关于累积能量,在2015年,能量从各个方向相当平稳且均匀地增加,如后续能量轮廓曲线之间的规则径向间距所示,最大增加幅度为100至200 ms,因此反射以35至70的路径差到达米后的直接声音,主要归因于拱形天花板。横向能量的首次增加是在直接声音到达后的10到50毫秒内发生的,这与中殿中的列行以及侧阳台的反射相吻合。在平面和截面上,包含0到1000 ms的最终分析窗口在-10 dB的相对水平下相当圆。相反,如先前的分析所述,2020年的结果显示,在初始时间窗口之后,能量的阶跃函数降低更多,这表明在整个时间(尤其是在垂直方向)上都缺乏随时间的渐进反射累积。在所有方向上平均的200到1000毫秒之间的相对累积水平为2dB,比2015年的结果低2dB。

5. 讨论与未来工作

由于[13,14]中的数据与2015年的测量结果相当,因此可以得出结论,导致更短混响时间估计的变化是在1987年至1996年之间进行的。由于巴黎圣母院大教堂的体积相当大,混响时间差必须是实质性变化的结果。还可以考虑大气条件影响混响时间结果的可能性。然而,由于温度和相对湿度主要影响1000 Hz以上的混响估计[30],因此可以将其排除为减少混响时间的原因。因此,地毯跑步者可能是候选人。

自2019年毁灭性大火以来,混响时间的减少显而易见。使用扫频正弦波和脉冲源以及相对近端位置都观察到相同的差异。导致T20急剧降低20%的建筑元素仍有待验证。非线性衰减率或耦合声量分析突出了这样一个事实,即变化的规模很大,影响了大教堂的不同区域,为此,拱形天花板上的孔可能是至少起重要作用的候选对象。后续工作将需要确定火灾损害相对于临时安装位置和残留杂物的声学影响。

根据2015年的测量结果创建并校准了巴黎圣母院的几何声学模型,并根据2013年4月24日的音乐会表演记录[31],制作了虚拟的音乐会重建模型[31],未来大教堂的声学研究工作可以使用此计算机模型,最近的测量结果和模拟来使模型适应建筑物的发展状态。正如最近的研究表明,数值模拟用于研究复杂和耦合的声学条件[24]以及感知生存力[32]的可靠性一样,这种几何声学分析工作在大教堂中可以认为是可靠的。最初的工作将集中在2020年的火后状态,以归因于各种变化的声学影响。这些结果将提供给重建团队,然后可以将该模型进一步用于评估项目期间建筑重建建议的声学影响。

声学模型可用于研究重建过程中可能的演化,其自850年前建造以来,还可用于探索巴黎圣母院的声学演化。几个世纪以来,大教堂的许多元素发生了变化,从法国大革命期间发生的各种建筑翻新和破坏到用于不同活动的各种装饰,无论是宗教的政治,政治以及整个季节,巴黎大教堂圣母院的音响效果在整个历史上都不是一成不变的,而是其环境和人类占领的不断发展的无形产物。结合历史研究成果,声学模型和相关的虚拟模拟可用于探索和体验这些先前的状态[33]。

作者贡献:概念化,B.F.G.K.和A.W .;方法学,B.F.G.K.和A.W .; B.F.G.K.软件;验证,B.F.G.K。和A.W .;形式分析,B.F.G.K。和A.W.; B.F.G.K.调查和A.W .;资源,B.F.G.K.;数据策划,B.F.G.K .;写作-原始草案准备,B.F.G.K。和A.W.;写作-审查和编辑,B.F.G.K。和A.W .;可视化,B.F.G.K.和A.W .;监督,B.F.G.K .; B.F.G.K.项目管理;资金获取,B.F.G.K.所有作者均已阅读并同意该手稿的发行版本。

资金来源:这项工作的部分资金来自“尚蒂尔圣母大学”,而CNRS跨领域和跨学科研究计划(MITI)也投入了资金。欧盟JPI文化遗产项目PHE提供了额外的支持,以探索建筑声学和音景的文化遗产。这项工作的2015年阶段部分由法国ECHO项目(授权号ANR-13-CULT-0004),echo-projet.limsi.fr和BiLi(授权号FUI-AAP14,www.bili-project)资助.org)。

致谢:特别感谢巴黎圣母院的工作人员在测量过程中的协助和耐心。我们还要感谢MichèleCastellengo提供了1987年音乐实验室的原始数据录音,该录音是应文化部长的要求而进行的。感谢2015年测量期间Bart Postma,Julie Meyer和Jean-Marc Lyzwa(CNSM)的协助。特别感谢Tapio Lokki对SDM分析的讨论,以及FrédéricBilliet对Notre-Dame音乐史的贡献。最后,我们要感谢Escadrone在租用2020年测量中移动设备所需的机器人方面的帮助和指导。

 参考文献可在原文中查看


点击:查看更多分类文章

          免费试用文档翻译



免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。

 来源于:MDPI



福昕翻译转换文章内容来源:https://fanyi.pdf365.cn/help/82
上一篇: 肥胖相关炎症中的单不饱和脂肪酸(结论)
下一篇: 医学遗传学摘要