福昕翻译

>

翻译学堂

全部内容
  • 怎么操作文档翻译,可简单翻译word、 pdf翻译吗?
    有的人偏食有的人偏科,这都是很正常的,一件事总有人擅长有些人不擅长,阅读外语文档时如果外语水平不好,就比较麻烦了,文档内容多,如果分段复制翻译会影响整篇文章的准确度,怎么操作文档翻译?有简单的办法吗?今日小编给大家整了一份翻译教程,可以简单翻译word、pdf文档翻译。今天咱们不是用百度搜索翻译,以福昕翻译为例子,福昕翻译—文档翻译—上传文件支持PDF翻译、Word翻译、PPT翻译、Excel翻译常用文档都可以翻译。文档上传后,选择翻译需求和翻译语言,有默认信息确认下就可以点击【开始翻译】,文档进入快速翻译。在线查看译文:翻译后点击右侧就可以在线查看译文,可以选择逐页对比翻译原文译文,左右对比翻译,下图是双语译文,分为上下原文译文段落对比阅读。下载译文:译文下载可选择保留语文样式和排版的“高保真”译文如下图,还有双语译文,两种模式的预览效果都不错。文档翻译简单翻译教程就分享到这里了, 打开福昕翻译文档功能,上传文档然后点击开始翻译,立马就能查看译文,不管是PDF翻译、Word翻译、PPT翻译、还是Excel翻译,常用文档翻译都可以得到解决,有文档需求的小伙伴一定要去试试,毕竟试试翻译不花钱没损失,别以为福昕翻译只能解决文档翻译,还有免费好用的图片翻译和专业议员翻译,一个网站解决所有翻译需求!
  • 免费图片翻译,这么简单你还不会?
    昨天听我同事在烦恼,不会翻译pdf文件里的图片,结果一个人勤勤恳恳将图片里的词语一个一个单词拼写出来,后面还是碰到了多国语言没法拼写了才来求助我,让我惊叹,都5G时代了,免费图片翻译居然还不会用!不会的赶紧看下面的文章,别让人笑话了。福昕翻译—文字翻译—图片翻译非常简单,使用福昕翻译官网为例子,打开【文字翻译】功能。两个方式一键翻1)粘贴/Ctrl+v图片到下图左侧操作框内,立即开始翻译。2)点击左下侧【上传图片】按钮图片上传立即翻译。轻松查看译文;操作时翻译了一张外语的说明书,左侧是上传的图片和图片中被提取出的文字,右侧是翻译后的语言,可以看出译文准确度很高,中文内容很流利。操作流程就到这,看完是不是很简单呢?上传个图片或者复制粘贴个图片,就能翻译而且翻译快速、还是免费翻译,高效的翻译可以帮助我们节省非常多的时间,都5G时代了我们真应该好好使用这样的互联网产品,福昕翻译除了免费图片翻译,还有免费的文档翻译功能以及专业议员翻译,比自己翻译省事省时省力多多了,感兴趣的小伙伴可以去试用哦!
  • 微塑料无处不在—但是它们有害吗?
      科学家们急于研究海洋动物以及我们内部的微小塑料斑点。  林小志  从马里兰州的马洛西河收集的微塑料。信用:威尔·帕森/切萨皮克湾计划 李敦柱以前每天都在一个塑料容器里放微波午餐。但是,当环境工程师李和他的同事做出令人不安的发现时,他停了下来:塑料食品容器将大量的称为微塑料的细小斑点掉入了热水中。“我们感到震惊,”李说。李和其他研究人员在都柏林三一学院(Trinity College Dublin)去年10月1日报道,水壶和婴儿奶瓶也脱落了微塑料。研究小组计算得出,如果父母通过在塑料瓶内的热水中摇晃婴儿配方奶来制备婴儿配方奶,那么他们的婴儿每天可能会吞下超过一百万个微塑料颗粒。 李和其他研究人员还不知道这是否危险。每个人都吃和吸入沙子和灰尘,尚不清楚额外饮食的塑料斑点是否会危害我们。“英国的埃克塞特大学生态毒理学家塔玛拉·加洛韦(Tamara Galloway)说:“摄入的大部分食物都将直接穿过肠道,到达另一端。” “我认为可以说潜在的风险可能很高,”李先生谨慎地选择了自己的话。  近20年来,研究人员一直在担心微塑料的潜在危害,尽管大多数研究都集中在对海洋生物的危害上。英国普利茅斯大学的海洋生态学家理查德·汤普森(Richard Thompson)在他的团队在英国海滩上发现塑料微粒后,于2004年创造了这个名词,用以描述直径小于5毫米的塑料微粒。此后,科学家们在所见之处到处都看到了微塑料:深海中;在北极雪和南极冰中;在贝类,食盐,饮用水和啤酒中;飘到空中,或因雨水飘落在高山和城市上空。这些细小的碎片可能需要数十年甚至更长的时间才能完全降解。加洛韦说:“几乎可以肯定,几乎所有物种中都存在一定程度的接触。”  清洁工人从南非西开普省的阿尼斯顿海滩收集塑料颗粒。图片来源:汤姆·卡马乔(Tom Camacho)/科学图片库  对微塑料的最早研究集中在个人护理产品中发现的微珠,以及在被模制成物体之前可以逸出的原生塑料颗粒,以及从废弃的瓶子和其他大碎屑中慢慢侵蚀的碎片。所有这些都冲入河流和海洋:2015年,海洋学家估计全世界地表水中漂浮着15万亿至51万亿个微塑料颗粒。此后,人们已经发现了其他的微塑料来源:例如,道路上汽车轮胎上的塑料斑点会从衣服上脱落,合成微纤维会从衣服上脱落下来。这些颗粒在海陆之间吹来飞去,因此人们可能从任何来源吸入或吃掉塑料。  荷兰瓦赫宁根大学的环境科学家Albert Koelmans于3月2日报道说,从对空气,水,盐和海鲜中的微塑料的有限调查来看,儿童和成人每天可能摄入数十至十万种微塑料斑点。他和他的同事认为,在最坏的情况下,人们每年可能会吞噬掉一张信用卡的微塑料。 监管机构正在迈出第一步,以量化人们健康的风险-测量暴露程度。今年7月,加利福尼亚州环境保护局的一个分支机构加利福尼亚州水资源控制委员会将成为世界上第一个宣布量化饮用水中微量塑料浓度的标准方法的监管机构,其目的是在未来四年内对水进行监测并公开报告结果。  评估塑料小斑点对人或动物的影响是难题的另一半。说起来容易做起来难。超过100个实验室研究已经使动物(主要是水生生物)接触到了微塑料。但是他们的发现-暴露可能导致某些生物繁殖效率降低或遭受物理破坏-难以解释,因为微塑料具有多种形状,大小和化学成分,而且许多研究使用的材料与环境中发现的材料完全不同。  最小的斑点(称为纳米塑料)(小于1微米)使研究人员最为担忧(请参阅“按比例缩放的塑料”)。有些可能能够进入细胞,从而潜在地破坏细胞活性。但是这些粒子中的大多数对于科学家来说甚至都太小了。例如,这些食物并未计入Koelmans的饮食估算中,加利福尼亚州也不会尝试对其进行监控。  来源(工具和成本):S. Primpke等。应用 光谱。 74,1012至47年(2020年)。  一件事很清楚:问题只会加剧。每年生产近4亿吨塑料,预计到2050年,这种塑料的生产量将增加一倍以上。即使明天所有塑料生产都神奇地停止了,垃圾填埋场和环境中的现有塑料(估计约为50亿吨)仍将继续降解成无法收集或清理的微小碎片,不断提高微塑性水平。Koelmans将此称为“塑料定时炸弹”。  他说:“如果您问我有关风险的信息,今天我并不那么害怕。” “但是如果我们什么都不做,我会对未来感到担忧。”  伤害方式  研究人员有几种关于塑料斑点可能有害的理论。如果它们足够小,可以进入细胞或组织,那么它们可能只是被外来生物所刺激,就像长而细的石棉纤维一样,可能会刺激肺部组织并导致癌症。潜在的污染与空气污染平行:发电厂,汽车尾气和森林大火中产生的烟尘斑点称为PM 10和PM 2.5(粒径分别为10 µm和2.5 µm的颗粒物)会沉积在呼吸道和肺部,并且高浓度会损害呼吸系统。Koelmans指出,PM 10的含量仍然比空气中发现的微塑料的浓度高数千倍。  较大的微塑料更可能通过化学毒性产生负面影响(如果有)。制造商在塑料中添加了诸如增塑剂,稳定剂和颜料之类的化合物,其中许多物质都是有害的,例如,干扰内分泌(激素)系统。但是摄入微塑料是否会显着增加我们对这些化学物质的暴露,取决于它们从塑料斑点中移出的速度以及斑点在我们体内的传播速度—研究人员才刚刚开始研究这些因素。  在旧金山湾地区收集的用于研究的微塑料。信用:科尔·布鲁克森(Cole Brookson)  另一个想法是环境中的微塑料可能会吸引化学污染物,然后将它们输送到食用被污染斑点的动物中。但是动物无论如何都要从食物和水中摄取污染物,甚至吞咽时几乎没有被污染的塑料斑点也有可能帮助清除动物肠道中的污染物。马里兰州盖瑟斯堡市美国国家标准与技术研究院的海洋生物学家詹妮弗·林奇说,研究人员仍然无法就携带污染物的微塑料是否是一个重大问题达成共识。  也许最简单的危害模式-至少对于海洋生物而言-可能是生物吞噬了没有营养价值的塑料斑点,并且没有吃足够的食物来生存。Lynch也是檀香山夏威夷太平洋大学海洋废弃物研究中心的负责人,他对尸体进行了尸体解剖,这些尸体被发现死在海滩上,看着它们胆量中的塑料和组织中的化学物质。在2020年,她的团队完成了对3周龄以下的9头turtle孵化的分析。一只孵化器只有9厘米长,其胃肠道中有42块塑料。大多数是微塑料。  夏威夷海龟孵化后的照片显示在其微塑性胃内容物旁边。信用:珍妮弗·林奇  林奇说:“我们不相信他们当中有任何人是专门死于塑料的。” 但她想知道,孵化器是否可能难以按照所需的速度增长。“对于那些小家伙来说,这是一个非常艰难的人生阶段。”  海洋研究  研究人员在对海洋生物造成微生塑的风险方面做了最多的工作。英国普利茅斯海洋实验室的海洋生物学家佩内洛普·林德克(Penelope Lindeque)说,例如,在最小的海洋生物中,浮游动物在微塑料存在下生长速度较慢,繁殖较不成功:动物的卵较小,孵化的可能性较小。她的实验表明,繁殖问题源于浮游动物没有吃足够的食物3。  但是,由于生态毒理学家在知道水生环境中存在哪种微塑料之前就开始进行实验,因此他们严重依赖于人造材料,通常使用较小尺寸的聚苯乙烯球体,并且其浓度远高于所发现的调查结果(请参阅``对微塑料进行分类'')。    资料来源:自然分析  科学家已开始转向更符合环境的现实条件,并使用纤维或塑料碎片,而不是球形。一些人已经开始用模仿生物膜的化学物质涂覆测试材料,这似乎使动物更容易食用微塑料。  纤维似乎是一个特殊的问题。林德克说,与球形相比,纤维通过浮游动物所花费的时间更长。2017年,澳大利亚研究人员报告说,暴露于微塑料纤维的浮游动物产生的幼虫数量是通常数量的一半,而成年幼虫数量较小。纤维没有被摄入,但是研究人员发现它们干扰了游泳,并发现了生物体内的变形4。2019年的另一项研究5发现,暴露于纤维的成年太平洋mole鼠(Emerita Analoga)的寿命较短。     大多数实验室研究将生物暴露于一种特定大小,聚合物和形状的微塑料中。Koelmans说,在自然环境中,有机体会暴露于混合物中。在2019年,他和他的博士生Merel Kooi绘制了11种海洋,河流和沉积物调查中报告的大量微塑料,以建立水生环境中混合物的模型。  去年,两人与同事合作,在计算机模拟中使用此模型,预测鱼多久会遇到足够小的食用微量塑料,以及食用过多斑点影响生长的可能性。研究人员发现,在目前的微塑性污染水平下,鱼类在有微塑性检查位置的1.5%处存在这种风险6。Koelmans说,但是风险可能会更高。一种可能是深海:一旦到达那里并经常被埋在沉积物中,微塑料就不可能运到其他地方,也没有办法清理它们。  海洋已经面临许多压力,这使林德克更担心微塑料会进一步耗尽浮游动物种群,而不是它们会向上转移到食物链中以到达人类。“如果我们淘汰象浮游生物这样的东西,这是我们海洋食物网的基础,我们将更加担心对鱼类种群的影响以及养活世界人口的能力。” 人体研究  领先的研究人员说,尚无公开研究直接检查塑料斑点对人的影响。唯一可用的研究依赖于使细胞或人体组织暴露于微塑料中或使用动物(例如小鼠或大鼠)的实验室实验。例如,在一项研究7中,喂食大量微塑料的小鼠的小肠发炎。与对照组相比,两项研究中暴露于微塑料的小鼠的精子数量降低了8,幼崽的数量也更少,更小9。一些体外对人体细胞或组织的研究也表明有毒性。但是,就像海洋研究一样,尚不清楚所使用的浓度与老鼠或人类所接触的物质是否有关。大多数研究还使用了聚苯乙烯球,这并不代表人们摄入的微塑料的多样性。Koelmans还指出,这些研究是同类研究中的第一批,一旦有了确凿的证据,最终可能会成为异常值。还有更多的在体外比动物实验研究,但研究人员说,他们仍然不知道如何来推断的组织在整体动物可能的健康问题的固体胶斑点的效果。  发现塑料了吗?从美国西部的国家公园和荒野地区取样的这种毫米级放大图像中,灰尘,沉积物,微塑性纤维和微珠混杂在一起。图片来源:犹他州立大学Janice Brahney  围绕风险的一个问题是,微塑料是否可能残留在人体中,并可能在某些组织中积累。小鼠研究发现,直径约5 µm的微塑料可以留在肠中或到达肝脏。Koelmans和同事使用非常有限的数据说明小鼠排泄微塑料的速度,并假设只有一小部分1-10 µm的颗粒会通过肠道吸收到体内,Koelmans及其同事估计,一个人可能会在其体内积聚数千种微塑料颗粒。一生中的身体2。  一些研究人员已经开始探索在人体组织中是否可以找到微塑料。十二月,一个小组在一项研究中首次记录了这六个胎盘10,对此进行了记录。。研究人员用一种化学物质分解了组织,然后检查了剩下的东西,最后在其中4个胎盘中得到了12个微塑性颗粒。坦佩亚利桑那州立大学环境健康工程师罗尔夫·哈尔登说:“然而,收集和分析胎盘时,这些斑点并不是污染的结果,尽管他赞扬研究人员为避免污染所做的努力,其中包括保持运送病房内没有塑料物品,并表明通过相同样品分析获得的空白对照材料集未受到污染。他说:“结论性地证明给定的颗粒实际上起源于组织方面一直存在挑战。”  李说,那些担心自己暴露在微塑料中的人可以减少这种情况。他在厨具方面的工作发现,散落的塑料量很大程度上取决于温度-这就是为什么他停止在塑料容器中微波烹饪食物的原因。为了减少婴儿奶瓶的问题,他的团队建议父母可以用在非塑料水壶中煮沸的凉水冲洗消毒过的奶瓶,以洗去消毒过程中释放的任何微量塑料。他们可以在玻璃容器中制备婴儿配方奶粉,在牛奶冷却后填充奶瓶。该小组现在正在招募父母,为他们的婴儿尿液和粪便提供志愿者样品以进行微塑性分析。  纳米级  Halden说,最细小的颗粒能够穿透并在组织甚至细胞内徘徊,是最令人担忧的一种,需要在环境采样中给予更多关注。例如,一项研究11故意让怀孕的小鼠吸入极微小的颗粒,后来在胎儿的几乎每个器官中都发现了这些颗粒。“从风险的角度来看,这才是真正的关注点,也是我们需要更多数据的地方。”  要进入细胞,颗粒通常需要小于几百纳米。直到2018年,法国研究人员提出了1 µm的尺寸上限,才对纳米塑料做出正式定义。这种微小的尺寸足以保持分散在水柱中,在这里生物体可以更容易地吸收它们,而不是像大型的微塑料那样沉没或漂浮,法国图卢兹的保罗·萨巴蒂埃大学的分析化学家亚历山德拉·特·哈雷说。  但是研究人员对纳米塑料几乎一无所知。它们是看不见的,不能简单地sc起。仅仅对它们进行测量已经困扰了科学家。  研究人员可以使用光学显微镜和光谱仪(通过与光的不同相互作用来区分颗粒)来测量塑料颗粒的长度,宽度和化学组成,直至几微米。低于该规模,塑料颗粒变得难以与非塑料颗粒(例如海洋沉积物或生物细胞)区分开。瑞士非营利研究组织Sail and Explore Association的纳米材料科学家Roman Lehner说:“您正在大海捞针,但看起来像干草。”  使用红外光谱分析从德国奥尔登堡的一家废水处理厂提取的样品的伪彩色图像。从颜色中挑出的碎片是塑料聚合物。其他碎片包括橡胶,烟灰,沙子和植物纤维。资料来源:S。Primpke等。肛门 生物肛门。化学。410,5131-5141(2018)。     2017年,ter Halle及其同事首次证明了环境样品中存在纳米塑料:从大西洋12收集的海水。她从水中提取胶体固体,过滤掉任何大于1 µm的颗粒,燃烧掉残留的颗粒,然后使用质谱仪(将分子破碎并按分子量对碎片进行分类)来确认残余物中存在塑料聚合物。  但是,这没有提供有关纳米塑料确切尺寸或形状的信息。Ter Halle通过研究她在探险期间收集的两个退化的塑料容器的表面,获得了一些想法。她发现,前几百微米已经变成晶体和脆性。她认为,可能从这些表面脱落的纳米塑料也可能如此13。目前,由于研究人员无法从环境中收集纳米塑料,因此进行实验室研究的人员会磨碎自己的塑料,并希望得到类似的颗粒。    使用自制的纳米塑料有一个优势:研究人员可以引入标签来帮助跟踪测试生物体内的颗粒。莱纳及其同事准备了荧光纳米尺寸的塑料颗粒,并将其置于由人体肠壁细胞构建的组织下14。细胞确实吸收了颗粒,但是没有显示出细胞毒性的迹象。  莱纳说,发现存在完整组织切片中的塑料斑点(例如,通过活检)并观察任何病理影响,将是解决微塑性风险的最后一个难题。霍尔登说,这将是“非常理想的”。但是要到达组织,颗粒必须非常小,因此两位研究人员都认为,很难最终检测到它们。  收集所有这些数据将花费很多时间。Ter Halle与生态学家合作,量化了野外微量塑料的摄入量。她说,仅分析大约800个昆虫和鱼类样本中的大于700 µm的颗粒,就花费了数千小时。研究人员现在正在检查25-700 µm范围内的颗粒。她说:“这是困难而又乏味的,要获得结果将花费很长时间。” 她补充说,要查看较小的尺寸范围,“工作量是成倍增加的。”     在亚历山德拉·特·哈雷(Alexandra ter Halle)的一次海洋探险中收集的塑料样品。图片提供:Vinci Sato @ Expedition 7 Continent  没有时间可以浪费  研究人员认为,目前,环境中的微塑料和纳米塑料含量太低,无法影响人体健康。但是他们的人数会增加。去年9月,研究人员预测15,每年添加到现有废物中的塑料量(无论是仔细地在密封的垃圾填埋场中还是散落在陆地和海洋中)都可能从2016年的1.88亿吨增加一倍以上,到2040年达到3.8亿吨。然后,科学家们估计,其中约有1000万吨可能是以微塑料的形式存在的-这种计算不包括不断从现有废物中侵蚀掉的颗粒。  该研究的第一作者,华盛顿特区皮尤慈善信托基金会的Winnie Lau说,可以控制我们的一些塑料废物。研究人员发现,如果在2020年采用所有行之有效的遏制塑料污染的解决方案,并尽快扩大规模(包括转换为再利用系统,采用替代材料并回收塑料),则塑料废物的添加量可能会减少到1.4亿到2040年每年。  到目前为止,最大的收益将来自减少仅使用一次并丢弃的塑料。加洛韦说:“生产持续500年然后再使用20分钟的东西是没有意义的。” “这是一种完全不可持续的生活方式。”点击查看:更多分类文章更多医学分类文章使用文档翻译功能使用图片文字识别功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
    2021-05-10 19:31:53
    26
  • 基因治疗可恢复罕见免疫缺陷儿童的免疫功能
    DNA双螺旋位于DNA字母A,T,C和G的打印插图上。NHGRI Darryl Leja根据美国国立卫生研究院部分支持的研究,研究性基因疗法可以安全地恢复患有罕见的,威胁生命的遗传性免疫缺陷疾病的婴儿和儿童的免疫系统。研究人员发现,接受基因治疗的50名儿童中有48名在两到三年后保留了补充的免疫系统功能,不需要针对其状况进行其他治疗,这是由于腺苷脱氨酶缺乏症或ADA-SCID而导致的严重的联合免疫缺陷。这些发现今天发表在《新英格兰医学杂志》上。据估计,ADA-SCID在全世界200,000至1,000,000的新生儿中约有1个发生,其原因是ADA 基因的突变 削弱了健康免疫系统功能所需的腺苷脱氨酶的活性。这种损害使儿童容易感染严重的疾病。如果不加以治疗,则该疾病是致命的,通常在生命的头两年内。美国国立卫生研究院过敏与传染病研究所(NIAID)主任Anthony S. Fauci,医学博士说:“这些发现表明,这种实验性基因疗法可作为患有ADA-SCID的婴幼儿的潜在治疗选择。” “重要的是,基因疗法是一次性的程序,它为患者提供了开发功能全面的免疫系统的希望,并为他们提供了充实,健康的生活的机会。”患有ADA-SCID的人可以接受酶替代疗法治疗,但是这种疗法不能完全重建免疫功能,必须终身服用,通常每周一次或两次。理想情况下,从遗传匹配的同胞供体移植成血干细胞可以提供更持久的解决方案。但是,大多数人缺乏这样的捐助者。此外,干细胞移植会带来诸如移植物抗宿主病的风险, 以及化学疗法带来的副作用,这些化学疗法可以帮助供体干细胞在患者的骨髓中建立自身的地位。这项新研究评估了一种实验性慢病毒基因疗法,该疗法比以前测试的ADA-SCID基因疗法更安全,更有效。这种基因疗法包括将 ADA 基因的正常副本插入患者自身的造血干细胞中。首先,从患者的骨髓或外周血中收集干细胞。接下来,将无害病毒用作“载体”或载体,以将正常的 ADA 基因传递给实验室中的这些细胞。经过基因校正的干细胞然后被注入患者体内,该患者已经接受了低剂量的化疗药物白消安,以帮助细胞在骨髓中建立自己的位置并开始产生新的免疫细胞。由加利福尼亚大学洛杉矶分校(UCLA)和伦敦大奥蒙德街医院(GOSH)的研究人员开发的实验基因疗法,使用修饰的慢病毒将ADA基因传递给细胞。以前的ADA-SCID基因治疗方法依赖于另一种称为伽马逆转录病毒的病毒。一些接受了伽玛逆转录病毒基因疗法的人后来患上了白血病,科学家怀疑这是由于载体导致控制细胞生长的基因激活所致。慢病毒载体的设计避免了这种结果,并增强了基因向细胞内传递的有效性。结果来自三项单独的1/2期临床试验,两项在美国进行,一项在英国进行。由UCLA首席研究员Donald Kohn博士领导的美国试验在UCLA Mattel儿童医院和位于马里兰州贝塞斯达的NIH临床中心招募了30名年龄在4个月至4岁之间的ADA-SCID参与者。在GOSH进行的英国研究由主要研究者MBBS博士Claire Booth领导,招募了20名参与者,年龄从4个月到16岁不等。大多数参与者在基因治疗后获得并保留了强大的免疫功能(美国研究两年后为96.7%,英国研究三年后为95%),并且能够停止酶替代疗法和其他药物。在两名基因治疗不能恢复持久免疫功能的参与者中,一个参与者重新开始了酶替代疗法,后来又成功地从供体那里获得了干细胞移植成功,另一个参与者重新开始了酶替代疗法。慢病毒基因疗法总体上看来是安全的,尽管所有参与者都经历了一些副作用。其中大多数是轻度或中度的,可归因于参与者接受的化学疗法。尽管这三项研究之间存在一些差异,但研究人员在所有三项试验中均观察到了相似的结果。在美国试验中从骨髓中收集干细胞,在英国试验中从外周血中收集干细胞。在一项美国试验中,对10名儿童进行了基因校正的干细胞治疗,这些干细胞已被冷冻并随后解冻。另外两个试验使用了新鲜的干细胞制剂。将来,冷冻程序(称为冷冻保存)可以使干细胞更容易在远离患者家的制造工厂中运输和加工,然后运回当地医院,从而减少了患者长途跋涉前往医院的需要。专门的医学中心接受基因治疗。有关《新英格兰医学杂志》论文中描述的试验的更多信息,请访问ClinicalTrials.gov,其标识符为NCT01852071,NCT02999984和NCT01380990。研究性慢病毒基因疗法已获得Orchard Therapeutics的许可,尚未获得任何监管机构的批准。这项研究部分由美国国立卫生研究院(NIH)的三个研究所资助。国家心肺血液研究所;和国家人类基因组研究所。加州再生医学研究所,医学研究理事会,位于大奥蒙德街儿童医院的国家健康研究所生物医学研究中心,国家健康服务基金会信托基金和伦敦大学学院提供了额外的资金,并提供了Orchard Therapeutics。 点击查看:更多有关医学文章更多生物学分类文章使用文档翻译功能使用专业译文翻译 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:NIH
    2021-05-12 18:49:39
    19
  • 写论文被文献翻译难倒?试试快速文档翻译(末尾福利)
    五月份对于学生来说是幸福的,因为时间很快马上就到暑假了,对于大四的学生来说,是痛苦的因为毕业季来了!说到毕业季论文不得不被提起,因为想要顺利的毕业,一篇合格的论文是必不可少的,今天小编给大家推荐一个在写论文时的一个技巧——翻译文献快速文档翻译。可别小看这个技巧,写论文时阅读文献的时候占比比较大,如果是外文英文文献更是花费大量时间,所以学会这个技巧真个很必要,随着小编一起来学习吧!首页,打开多功能翻译平台【福昕翻译】选择【文档翻译】,将需要翻译的文献上传,支持PDF、Word、PPT、Excel文件常用格式。开始翻译,文档上传后可以选择我翻译的需求和翻译语言(自动识别语言默认翻译中文),最后点击【开始翻译】就可以了。 查看译文,福昕翻译的翻译速度挺快的,几乎是一页秒翻的,所以再多的文档页数也能很快的查看译文了,下图是保留原文样式的“高保真”译文下载,左侧是翻译前的原文右侧是翻译后的中文,同时放在一起用于给你们进行对比,还可以在线预览哦包括原文译文上下/左右对比。 到这查看英文文献的技巧就分享完了,就是这么简单,上传文档然后翻译,就可以快速查中文文献,喜欢这个技巧可以分享给有需求的朋友们哦,因为这个可是实打实的利用互联网工具给我们带来便利的东西,快速翻译文献,简单编写论文,对了小编还准备了福利,点击文字【免费领取论文查重检测字数】就可以参与哦。
  • 联合光疗和低氧激活化疗有利于抗肿瘤免疫反应
      本文发表在以下DovePress期刊上:国际纳米医学杂志  背景:肿瘤转移是导致全球大多数癌症死亡的原因,缺乏治疗。  目的:本研究的目的是消除肿瘤并控制肿瘤转移的发展。  方法:在这里,我们演示了一个智能的纳米平台,其中2- [2-[2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2h-吲哚-2 -亚丙基]亚乙基]-1-环己烯-1-基]乙烯基] -3,3-二甲基-1-丙基碘化碘鎓(IR780)和替拉帕明(TPZ)共同负载在聚(ε-己内酯)-聚(乙烯)中乙二醇(PEG-PCL)形成通用的纳米颗粒(PEG-PCL-IR780-TPZ NP)。  结果:系统的智能反映在触发和控制的工程中。特别地,PEG-PCL不仅延长了IR780和TPZ的循环时间,而且还通过增强渗透性和保留(EPR)效应促进了纳米药物在肿瘤中的蓄积。而且,由IR780产生的活性氧(ROS)受到808 nm激光辐照引起了货物释放。同时,IR780作为靶向线粒体的光疗剂,加重了肿瘤的低氧微环境,并激活了TPZ,以完成缺氧激活的化学疗法。最重要的是,IR780能够在协同治疗期间触发免疫原性细胞死亡(ICD)。 ICD生物标记物作为“危险信号”加速树突状细胞(DCs)的成熟,并随后激活了毒性T淋巴细胞。  结论:最终,光疗和缺氧激活的化学疗法相结合刺激的抗肿瘤免疫反应彻底改变了目前的癌症治疗方法,显着抑制了肿瘤转移,为临床应用提供了广阔的前景。  关键词:光疗,缺氧激活化疗,IR780,替拉帕明,抗肿瘤免疫应答,转移  1. 介绍:  抗肿瘤策略方面的优势取得了长足进步,由于肿瘤的复发和转移,肿瘤的死亡率仍然很高。[1-8]免疫治疗由于其控制远处转移性肿瘤的功能而备受关注[9]。 –11特别是,检查点抑制剂和嵌合抗原受体T细胞免疫疗法被认为是治疗癌症的关键工具。12–20然而,由于严重的副作用,高成本和高成本,这两种策略的应用受到限制。个体差异较大。21-24更严重的是,一些肿瘤组织,尤其是三阴性乳腺癌(TNBC),经过检查点抑制剂治疗后的免疫应答相对较低,这主要归因于“冷”免疫微环境。4因此,探索实现“热”免疫微环境并触发免疫应答作为免疫治疗的前奏的新颖而有效的方法。尤为关键。  据报道,免疫原性细胞死亡(ICD)是一种刺激性的情况,可将“冷”免疫微环境变为“热”免疫微环境。25-27光疗作为微创治疗策略已显着应用于肿瘤消融。28-35最近的一份报告描述了光疗在激光照射下诱导了ICD。36除了光疗之外,还证实了其他一些ICD诱导剂,包括化学疗法和电离辐射。23,37,38但是,一些不可忍受的局限性,例如低药物输送,可忽略货物放行和单一治疗方案极大地限制了ICD的结果。高度期望智能通过对肿瘤反应性药物纳米载体的工程设计,光疗和化学疗法的合理组合能够协同作用,针对有限的ICD功效提供积极的突破。但是,几乎没有什么工作可以达到理想的高效率。  在这项研究中,我们将PEG-PCL-IR780-TPZ NPs(图1)定制设计为一种健壮的纳米载体系统,可高效递送光疗剂(IR780)和化疗前药(TPZ)。 IR780在808 nm激光照射下产生的1O2(ROS之一)在磷脂双层受损后从PEG-PCL-IR780-TPZNPs中释放IR780和TPZ,并同时释放。39-41IR780作为由于线粒体的光疗敏感性,靶向线粒体的光疗剂能够提高治疗效果。42,43Yang等人报道,TPZ作为一种可缺氧激活的前药,对正常细胞几乎没有影响,但具有选择性对低氧细胞有高毒性。44-46他们还证明了IR780光动力疗法过程中会加剧肿瘤缺氧的微环境,这会通过单电子还原反应刺激TPZ产生有毒的氧化自由基物质(羟基自由基和苯并三嗪基自由基)47。激活的化学疗法通过产生大量内源性增效剂,包括高运动性第1盒(HMGB1),三磷酸腺苷(ATP)和钙网蛋白(CRT),引发ICD介导的适应性免疫反应。48-50此外,内源性增效剂被识别树突状细胞(DC)并促进DC成熟。51因此,成熟的DC募集幼稚T细胞以激活细胞毒性T淋巴细胞(CTL),包括簇分化(CD)8 + T,CD4+T和NK细胞。 ,然后消融原发肿瘤并控制肿瘤转移。48,52,53总之,我们的研究提供了三个重要发现。首先,我们公开了一种具有纳米功能的触发和控制的纳米车辆。其次,我们强调了PEG-PCL-IR780-TPZ NP的光疗可加重肿瘤的缺氧并引发缺氧激活的化学疗法。第三,我们揭示了联合光疗和缺氧激活的化学疗法刺激的抗肿瘤免疫反应可显着抑制肿瘤转移。    图1示意图显示了用于肿瘤消融和转移抑制的免疫疗法。激光照射后,由聚乙二醇-聚己内酯-2- [2- [2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2H] -吲哚-2-亚丙基)亚乙基] -1-环烯-1-基]-乙烯基] -3,3-二甲基-1-丙基-1H-碘化碘-替拉帕明纳米颗粒(PEG-PCL-IR780-TPZ NPs)-基于协同的光疗和缺氧激活的化学疗法。损伤相关分子模式(DAMP)包括三磷酸腺苷(ATP),高运动性第1族框(HMGB1)和钙网蛋白(CRT)作为内源性增强剂产生,并随后促进树突状细胞(DC)成熟。最终,幼稚的T细胞被成熟的DCs募集,并产生包括CD8 + T,CD4 + T在内的细胞毒性T淋巴细胞(CTLs),并诱导自然杀伤(NK)细胞,在消融原发肿瘤和控制肿瘤转移中起着不可或缺的作用。  2. 材料和方法  2.1. 材料  替拉帕明(TPZ),ε-己内酯,2- [2- [2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2h-吲哚-2-亚烷基)亚乙基]-亚乙基]- 1-环己烯-1-基]乙烯基] -3,3-二甲基-1-丙基-碘化亚碘鎓(IR780碘化物),2,2,6,6-四甲基哌啶-(TEMP)二甘醇和N,N'-二甲基甲酰胺购自Sigma-Aldrich(中国上海)。(3-(4,5)-二甲基噻唑偶氮(-z-y1)-3,5-二苯基四氮唑鎓)MTT分析,4',6-二mid基-2-苯基吲哚(DAPI),钙黄绿素-AM /碘化丙啶(PI )双重染色测定,Dulbecco改良的Eagle培养基(DMEM),无血清RPMI-1640培养基和胎牛血清(FBS)从KeyGen Bio-tech Co.,Ltd.(中国南京)获得。白介素12(IL-12)ELISA试剂盒,异硫氰酸荧光素(FITC)结合的抗小鼠CD11c抗体,抗钙网蛋白(CRT)抗体,FITC结合的抗小鼠CD4抗体,P-藻红蛋白(PE)结合的抗小鼠CD83抗体,与藻蓝蛋白(APC)结合的抗小鼠CD8抗体,与Peridinin-叶绿素-蛋白质复合物(PerCP)结合的抗小鼠CD86抗体,与PE结合的抗小鼠CD69抗体和发光ATP检测法都是由Abcam(中国上海)带来。 HMGB1 ELISA试剂盒,抗小鼠CD31抗体和抗小鼠CD8抗体购自Bioss(中国北京)。抗兔二抗-Alexa Fluor 488和其他荧光抗体来自Beyotime生物技术研究所(中国南京)。所有化学试剂均未进一步纯化。将小鼠源性乳腺癌细胞系4T1细胞培养在生长培养基中,该培养基从上海生物科学研究所(中国上海)的细胞库中获得。所有无特定病原体(SPF)的小鼠均购自扬州大学比较医学中心(中国扬州),并饲养在无病原体的环境中。实验中使用的是去离子水,该水是从Milli-Q(Millipore,18.2MΩcm-1)。  PEG-PCL-IR780-TPZ纳米粒子的制备  如前所述进行聚(ε-己内酯)-聚乙二醇(PEG-PCL)的合成程序。54使用水包油型乳液溶剂扩散法制备PEG-PCL-IR780-TPZ纳米粒子(NP)。裂解法。54,55 Briey,将IR780(2.5mg)和TPZ(2.5mg)溶解在10 mL二氯甲烷中,并将PEG-PCL溶解在10 mL去离子水中。将它们混合并在超声作用下自组装。超声处理1小时后,成功合成了PEG-PCL-IR 780-TPZ NP,并通过离心沉淀。随后,将样品用去离子水洗涤三次,并在4℃下保存。  PEG-PCL-IR780-TPZ NP的表征  PEG-PCL NP和PEG-PCL的形态和大小-IR780-TPZ NPs使用透射电子显微镜(TEM,JEOL-200CX,日本东京)直接捕获。通过Zetasizer Nano-ZS90(英国,DLS)测量每种颗粒的流体动力学直径。使用UV-3600分光光度计(Shimadzu,Tokyo,Japan)确定UV-vis吸收光谱,以确保亲水性小分子成功地包封在PEG-PCL NP中。通过紫外可见分光光度计测定的IR780和TPZ的标准曲线分别计算了IR780和TPZ的载药量和包封效率。载药量和封装量的计算公式如下:    另外,将PEG-PCL-IR780-TPZ NPs在37°C的胎牛血清(FBS)或磷酸盐缓冲液(PBS)中溶解8天,以研究其稳定性。随后,使用DLS仪器监测流体力学直径。 808纳米二极管激光器(LEO光子公司)用于研究光疗。激光装置的纤维直径为200μm,借助光学透镜可以将光束直径扩大到11.4 mm,从而暴露出整个肿瘤区域。 TEMP自旋俘获电子顺磁共振(EPR)技术用于进行单重态氧的检测。 PEG-PCL-IR780-TPZ NP和ICG对Na2-ADPA的分解速率为  在不同的照射时间记录,并通过Na2-ADPA在378 nm处的吸收强度变化进行定量。参考一些报告计算了1O2量子产率。56-58  体外红外(IR)成像  PEG-PCL-IR780-TPZ NPs的体外光热特性是使用热成像相机(Fotric 226,中国上海)在808 nm激光辐照下以密度递减(1.5 W / cm2,1.0 W /平方厘米,0.5瓦/平方厘米,0.25瓦/平方厘米)。之后,PEG-PCL在1.0瓦/平方厘米的激光功率密度下,将6孔板中具有不同IR780浓度(0、50μg/ mL和200μg/ mL)的-IR780-TPZNPs溶液进一步照射10分钟。  体外ROS /缺氧检测  使用ROS-ID®缺氧/氧化应激检测试剂盒(ENZO,南京,中国)评估ROS /缺氧效果。首先,收获4T1细胞并将其接种在含有补充有10%FBS的DMEM的6孔板中12小时。孵育后添加IR780(200μg/ mL,根据IR780),PEG-PCL-IR780(200μg/ mL,根据IR780)和PEG-PCL-IR780-TPZ(200μg/ mL,根据IR780)。随后,将细胞暴露于808 nm激光(1 W / cm2)的照射下5分钟。然后在黑暗中将缺氧检测溶液再添加到6孔板中20分钟。最后,将细胞用PBS洗涤3次,然后使用IX73荧光显微镜(日本奥林巴斯)捕获图像。  MTT测定  使用MTT分析评估了PEG-PCL-IR780-TPZ NPs的体外细胞毒性。首先,将4T1细胞培养在96孔板中,每孔2×103个细胞,然后在37°C和5%CO2的含10%FBS的DMEM中孵育。孵育12小时后,将细胞与不同浓度的PEG-PCL-IR780NP,PEG-PCL-TPZ NP和PEG-PCL-IR780-TPZ孵育NP12小时。这些组或者用激光(1.0W /cm2)辐照5分钟或者不辐照5分钟。之后,将MTT溶液(5µL)加入96孔板中。再过4小时后,弃去上清液,加入150µL二甲基亚砜(DMSO)溶解晶体。最后,用酶标仪(Tecan,200 Pro NanoQuant,瑞士)测量光密度(OD)。  钙黄绿素-AM / PI双重染色测定  钙黄绿素-AM / PI双重染色用于评估细胞活力。简而言之,将4T1细胞在37°C和5%CO2的条件下接种到6孔板中12小时。将细胞与不同浓度的PEG-PCL-IR780NP和PEG-PCL-IR780-TPZ NP孵育12小时,然后暴露于808 nm激光照射(1.0 W / cm2)5分钟或不暴露5分钟。进行钙黄绿素-AM / PI共染色,并使用共聚焦激光扫描显微镜(CLSM,Olympus,FV1000,东京,日本)捕获活细胞和死细胞的荧光图像。数据由ImageJ分析。  体外ICD生物标志物分析  为了评估免疫原性细胞死亡(ICD)生物标志物的体外水平,将4T1细胞与IR780(200μg/ mL,根据IR780),PEG-PCL-IR780 NP(200μg/ mL,根据IR780)共培养以及PEG-PCL-IR780- TPZ NP(200μg/ mL,根据IR780)。孵育12小时后,是否进行808 nm激光照射5分钟(激光的功率密度为1 W / cm2)。再过3小时后,收集上清液以通过ELISA和化学发光测定试剂盒(发光ATP检测测定法(Abcam))检测HMGB1和/或ATP的释放。接下来,将4T1细胞用PBS洗涤两次,并用低聚甲醛(4%)固定15分钟。 PBS清洗后,牛血清白蛋白(BSA,6%w / v,孵育:60分钟)用于阻断抗体的非特异性结合。然后将4T1细胞与一抗(抗CRT抗体,稀释度1:100)在4°C孵育过夜。然后,将细胞用PBS洗涤3次,并与Alexa Fluor 488偶联的二抗(稀释度为1:100)在室温下于室温孵育60分钟。最后,洗涤细胞并用DAPI溶液染色。使用CLSM捕获荧光图像。  直流成熟度评估  为了研究DC的成熟,根据报道的方法从小鼠骨髓中收集了骨髓DC(BMDC)。59首先,将健康的BALB / c小鼠(5周龄)处死,并收集骨髓细胞。特定的无病原体状况。添加红细胞裂解液以纯化BMDC。之后,将细胞在补充有10%白细胞介素4(IL-4,10 ng /mL)和粒细胞-巨噬细胞集落刺激因子(GM-CSF,10 ng / mL)的无血清RPMI-1640培养基中培养。 37°C,5%的二氧化碳。孵育7天后,获得了纯化的BMDC。同时,将细胞与IR780(200μg/ mL,根据IR780),PEG-PCL-IR780NP(200μg/ mL,根据IR780)和PEG-PCL-IR780-TPZNP(200μg/ mL)孵育。至IR780)。使用808 nm激光照射(1 W / cm2,5分钟)持续24小时以触发DC成熟。用FITC偶联的抗小鼠CD11c抗体,PE偶联的抗小鼠CD83抗体,PerCP偶联的抗小鼠CD86抗体对细胞染色,然后使用流式细胞仪进行评估。同时,使用IL-12 ELISA试剂盒作为试剂方案评估上清液中的IL-12效应子水平。  异种移植小鼠的肿瘤模型  健康的雌性BALB / c小鼠(5周龄)是从扬州大学比较医学中心购买的,该小鼠生活在无特定病原体的环境中。动物实验获得南京大学护理委员会的批准(包括动物护理和使用指南以及小鼠安乐死的指南,协议编号:20180212-013)。皮下注射每只小鼠总共5×106 4T1细胞。使用游标卡尺每三天监测一次肿瘤体积。小鼠在右腋下接种4T1细胞后三天,通过尾部静脉注射第二批4T1细胞(5×106),以建立人工模拟转移模型。  体内红外成像  使用红外(IR)热像仪评估光热效应,以确保体内有效治疗。向患有4T1肿瘤的简陋小鼠静脉注射PBS或PEG-PCL-IR780-TPZ NP(1.5 mg / kg,根据IR780)。 12小时后,用808 nm激光以1 W/ cm2的功率密度照射4T1荷瘤小鼠10分钟。使用FotricAnalyzIR软件分析了所有热图。  体内抗肿瘤功效  为了评估PEG-PCL-IR780- TPZNP的治疗效果,将携带4T1肿瘤的小鼠随机分为四组,包括PBS,IR780(1.5 mg / kg,根据IR780),PEG-PCL-IR780(1.5) mg /kg,根据IR780)和PEG-PCL-IR780-TPZ(1.5 mg / kg,根据IR780)。 PBS组的小鼠接受100μLPBS作为阴性对照。其他组的小鼠通过静脉注射用100μL纳米颗粒处理,然后进行808 nm激光照射(1 W/ cm2)5分钟。记录平均肿瘤体积。相对肿瘤体积(RTV)的计算如下:RTV = V / V0,其中V代表每三天记录的体积,而V0代表原始体积。最终处理后,对小鼠进行人道牺牲以收获主要器官,并对其进行进一步的组织病理学分析。  组织病理学分析  收集器官和肿瘤组织,用PBS洗涤3次,然后立即固定在多聚甲醛溶液(4%w / v)中一天。之后,将组织包埋并切成30μm切片。最后,使用免疫组织化学(IHC)染色(Ki67和HIF),免疫荧光染色(CD31)以及苏木精和曙红(H&E)对切片进行染色。、  体内微正电子发射断层扫描(PET)成像  肿瘤缺氧的评估是使用micro-PET成像进行的。每个治疗组中的小鼠(PBS,IR780 +激光,PEG-PCL-IR780 +激光和PEG-PCL-IR780-TPZ+激光)静脉注射18F-氟嘧啶(18F-FMISO,75μCi/小鼠,100μL)。然后,使用Inveon小动物PET/CT系统对小鼠的肿瘤缺氧进行照相(宾夕法尼亚州西门子)。所有图像均使用Inveon Software(Siemens,PA)重建。  肺转移评估  使用如上所述建立的人工模拟肺转移模型研究了肺转移抑制作用。具体来说,在治疗后22天,肺转移小鼠被人道地牺牲了。收集肺并洗涤。切除的肺中可见的白色结节表明肺转移。通过奥林巴斯显微镜仔细计数肺转移性结节的数目。浸泡在溶液(4%w / v多聚甲醛)中的切除肺的H&E染色也用于评估组织学和病理学。  体内抗肿瘤免疫力评估  为了评估体内抗肿瘤免疫力,使用CRT的免疫荧光技术对肿瘤组织切片进行染色。使用免疫组织化学(IHC)研究了肿瘤中CD8 + T细胞的渗透。简而言之,收获肿瘤组织并进一步消化成离散的单细胞。随后,从悬浮液中吸出离散细胞,并使用PerCP偶联的抗小鼠CD86抗体和FITC偶联的抗小鼠CD11c抗体进行标记,以鉴定成熟的DC。使用APC偶联的抗小鼠CD8抗体,FITC偶联的抗小鼠CD4抗体和PE偶联的抗小鼠CD69抗体分别鉴定CD8 +细胞和CD4 + T细胞。最后,利用流式细胞术鉴定活化的效应细胞。  体内生化分析  将小鼠血液和组织收集到乙二胺四乙酸钠(EDTA)抗凝管中,以评估PEG-PCL-IR780-TPZ NP在体内的细胞毒性。进行了生化分析以检测体内的系统副作用,包括红细胞(RBC),白细胞(WBC),血红蛋白浓度(HGB),平均红细胞血红蛋白含量(MCH)和均值血红蛋白浓度(MCHC)。血小板水平(PLT)是评估脾功能的重要指标。  统计分析  所有统计分析均使用单向方差分析进行。所有数据均以平均值±标准差表示偏差。 * P值<0.05表示显着差异。  结果与讨论  PEG-PCL-IR780-TPZ NP的表征  PEG-PCL NP和PEG-PCL-IR780-TPZ NP的形态如图2A和B所示。PEG-PCLNP的平均大小非常接近PEG-PCL-IR780-TPZ NP的大小。如图2C所示,PEG-PCL-IR780-TPZNP的平均流体动力学直径约为135 nm,略大于PEG-PCL NP的平均流体动力学直径(125 nm)。吸收光谱表明,PEG-PCL在NIR窗口中没有明显的峰(图2D)。但是,PEG-PCL-IR780-TPZ NP的紫外-可见光谱有两个峰,归因于TPZ和IR780,证明TPZ和IR780成功地被PEG-PCL NP包封。图S1和S2分别显示了不同浓度下IR780和TPZ的吸收曲线。根据较早的数据,对IR780和TPZ的标准吸光度与浓度曲线进行了定量(图S3和S4)。 PEG-PCL-IR780-TPZNPs中IR780(3.28%,70.23%)和TPZ(3.33%,71.28%)的载药量和包封效率被计算了。考虑到药物输送系统(DDS)的稳定性是体内应用的先决条件,因此在37°C下将血清或PBS与PEG-PCL-IR780-TPZ NP混合以模拟体内生理条件。如图2E所示,在8天的时间内,大小没有明显变化,说明了PEG-PCL-IR780-TPZ NP作为DDS的出色稳定性。药物释放是智能DDS的重要角色。据报道,过量的ROS会损害PEG-PCL,从而导致随后的货物释放。作为NIR光敏剂的IR780能够产生单线态氧(一种类型的ROS)。我们推测了PEG-PCL-IR780-TPZNP在暴露于808 nm激光的照射下是否能迅速释放IR780。如图2F和图S5所示,在没有激光照射的情况下,未检测到IR780和TPZ从PEG-PCL-IR 780-TPZNPs中释放出来,表明PEG-PCL-IR780-TPZ NPs在循环中相当稳定。 相反,在808 nm激光的照射下,PEG-PCL-IR780-TPZ NP迅速分解,从而牢固有效地释放了IR780和TPZ。  因字数限制,文章未完点击查看:更多有医学分类文章更多生物学分类文章使用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:pubmed
    2021-05-06 20:00:37
    32
  • 国际COVID-19试验重新开始,重点是免疫反应
      世界卫生组织将测试三种现有药物是否可以挽救住院患者的生命。  海蒂·莱德福德(Heidi Ledford) 一名患者,在佛罗里达州萨拉索塔纪念医院的重症监护病房的COVID部分中度过了近一个月的时间。图片来源:Shannon Stapleton /路透社/ Alamy   一项具有里程碑意义的计划将在数十个国家/地区测试潜在的COVID-19疗法,并且将重新开始治疗,这是一个新的尝试-这次的目的是缓和可能加剧严重疾病的剧烈免疫反应。这项名为“团结”的临床试验将由世界卫生组织(WHO)进行协调,将测试三种抑制炎症的药物,这种方法已经在住院COVID-19的患者中显示出希望。   挪威公共卫生研究所科学主任,团结试验国际指导委员会主席约翰·阿恩·罗廷根说,这三种药物都是根据它们在较小的临床试验中显示的前景和广泛使用而精心选择的。他说:“您至少需要有希望的信号,其中一些信号会起作用。” “而且我们需要研究可以在广泛的国家/地区中投放的药物。”  当世界卫生组织在2020年3月推出的团结,研究的重点是抗病毒药物。到10月,该试验已在30个国家招募了超过11,000名COVID-19住院患者。但是,它也发现,它所测试的四种药物(伦德昔韦,干扰素,疟疾药物羟氯喹以及称为洛匹那韦和利托那韦的HIV药物的组合)均无法挽救生命或缩短住院时间1。  Røttingen说:“没有一种抗病毒药对住院患者显示出强效作用。” “新出现的共识是,为时已晚。抗病毒药物可能会受益的地方是,经过阳性测试后很快就可以实现。”现在,在停顿下来以找出下一步可以尝试的疗法之后,该试验希望将注意力集中在控制可能导致严重形式的COVID-19的免疫反应上。   调整免疫反应  随着病毒感染的发展,人体自身的免疫反应可能会造成伤害,从而损害健康组织以杀死被感染的细胞。2020年6月,英国一项名为RECOVERY的大型研究发现,具有免疫抑制作用的类固醇地塞米松可减少因冠状病毒感染而导致呼吸机或接受补充氧气者的死亡2。一项名为REMAP-CAP的大型国际试验发现,阻断关键免疫蛋白(白介素6(IL-6)受体)的药物可以减少COVID-19 3危重患者的死亡。伦敦帝国理工学院麻醉师安东尼·戈登说,在某些国家,地塞米松或同时使用地塞米松和IL-6受体阻滞剂已成为需要呼吸帮助的住院COVID-19患者的标准护理。 REMAP-CAP指导委员会。但是仍然存在改善的空间:“我们知道,即使采用这些治疗方法,仍有一些患者仍然生病,”他说。 因此,研究人员正在寻找其他方法来关闭特定的免疫反应。待测药物之一是英夫利昔单抗,用于治疗自身免疫疾病,包括克罗恩氏病和类风湿关节炎。它阻断一种称为肿瘤坏死因子α(TNF-α)的蛋白质,该蛋白质由称为巨噬细胞的免疫细胞释放并促进炎症。 该试验的第二种治疗方法是一种称为伊马替尼的抗癌药。研究人员希望它能同时针对冠状病毒和炎症,阻断人类细胞的病毒浸润,并降低称为细胞因子的促炎蛋白的活性。最后,团结基金会正在测试青蒿琥酯(青蒿琥酯),一种具有潜在抗炎作用的抗疟疾药物。Røttingen说,每种药物都将与标准护理同时提供,在许多地区包括地塞米松。   戈登说,REMAP-CAP还计划测试伊马替尼,这可能有助于防止肺部周围血管中的液体泄漏。该试验还将测试另一种针对TNF-α的药物,以及一种名为namilumab的药物,该药物可阻断一种称为GM-CSF的蛋白质,并可能降低细胞因子的活性。  凡尔赛大学(University of Versailles)的重症监护医师Djillali Annane说,通过所有这些方法来降低免疫系统的温度,研究人员必须小心,以免抑制免疫反应,以至于人们容易受到其他感染的伤害。法国Saint-Quentin-en-Yvelines,并且是REMAP-CAP国际指导委员会的成员。  在REMAP-CAP试验中,将首先为参与者提供类固醇(如地塞米松)和一种阻断IL-6受体的药物。仅当参与者在前两个治疗后未能改善时,他们才能获得针对免疫系统的其他药物。“这是针对那些没有反应的患者,” Annane说。“那么问题是,如果我们增加另一种方法来调节这些患者的炎症反应,我们可以挽救更多生命吗?” 点击查看:更多有关冠状病毒文章更多医学分类文章使用免费文档翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
    2021-05-08 18:19:43
    28
  • 哺乳动物早期发育的连续模型
    称为气化的早期发育过程的特征主要限于不同时间点的快照。现在,老鼠的胃气化模型可以连续不断地映射细胞类型之间的转换。在胚胎发育过程中,新的细胞类型以惊人的速度和健壮性出现。气化过程-单层细胞产生多个“细菌层”-是大多数动物早期发育的基础。尽管进行了150多年的研究,但胃气化的许多方面仍然难以捉摸,尤其是对控制此过程中出现的许多细胞谱系规范的分子因素的全面理解。Mittnenzweig等人在《Cell》中写作。1密集样本基因表达在36小时的时间里在胃化小鼠胚胎中的表达,并构建了细胞谱系规格的连续模型。如果我们将无节制电影中的胃化过程中的细胞视为人物(并且确实有漂亮的胃化电影2),那么我们如何才能理解屏幕上人物角色的内心独白和不断变化的动机呢?仅在过去的五年左右的时间里,随着表征单个细胞分子特征的技术的出现,随着细胞谱系的发展,我们才能够全面监测整个胃化过程中细胞的“内在生命”。一种这样的技术是单细胞RNA测序(scRNA-seq),该技术可对单个细胞的信使RNA含量进行分析。仍然存在一些可以通过单细胞技术解决的关键问题。例如,正在发育的胚胎中细胞类型规格的确切时机是什么?我们可以找到一个准确描述这些规格的模型吗?涉及的主要分子因素是什么?这些因素中的哪些会“驱动”细胞类型的规范,哪些会“响应”它们?   在包括哺乳动物在内的大多数动物中,胃肠道产生三个胚层:外胚层,中胚层和内胚层。在小鼠中,这是哺乳动物发育的重要模型系统,在受精后约6.5天(即,胚胎第6.5天或E6.5)开始胃化。尽管我们和其他人已经以合理的时间分辨率(例如,从E6.5到E8.5 3每隔6小时采样一次,或者从E9.5到E13每隔24小时采样一次)在整个小鼠早期发育过程中执行了scRNA-seq 。 5 4),鼠标开发过程中的变化速度是如此之快,以至于这可能是严重不足的。在我们的电影类比中,这类似于看电影,但仅叙述了少数场景。 在这种情况下,Mittnenzweig等人。着手在老鼠胃化过程中产生细胞状态动态的连续表示1。他们将scRNA-seq应用于从E6.5到E8.1的153个小鼠胚胎,总共在约33,000个单个细胞中分析了基因表达。由于根据形态标志物估算胚胎年龄的准确性受到限制,因此改为从分子数据中推断出胚胎的年龄,从而将每个胚胎分配给13个时间点之一。   为了在一系列快照之外增加其发展表示的时间分辨率,Mittnenzweig等人。假设任何给定胚胎内的细胞至少在某种程度上处于相对于彼此成熟的不同阶段。这组作者根据细胞的分子相似性将它们分组为461个称为“元细胞”的子集,每个子集都由非常相似的细胞组成,但值得注意的是,这些细胞可能来自不同的胚胎和/或来自不同的时间点。然后提交应用的算法来估计从每个元单元格细胞的分数在时间吨在时间“流”到其他metacells吨 + 1.至关重要的是,尽管这些元细胞的来源在时间上是离散的,但这些元细胞之间的推断流动在时间上却是连续的。  利用这种连续的小鼠胃泌气模型(图1),Mittnenzweig及其同事能够研究几个有趣的问题。首先,新的细胞类型在胃化过程中如何以及何时出现,基因表达模式的相关变化是什么?例如,他们的模型不仅预测原始红细胞(产生早期红细胞)起源于称为原始条纹的区域,而且将这种贡献的时间限制在E6.7之前,并按顺序排列与该谱系相关的不同转录因子的连续表达波。     图1 | 小鼠胃造血的连续流模型。Mittnenzweig等。1描述了在胃胚化过程中来自小鼠胚胎的细胞的RNA含量,在此过程中,称为外胚层的单个细胞层转化为三层:外胚层,内胚层和中胚层。通过这样做,作者生成了一个随着时间变化连续的胃排泄模型,显示了不同细胞类型之间的转换。此处显示了简化版本。较浅的盆地状区域旨在描绘逐渐的,连续的过渡,而较深的峡谷状区域则描绘更明确的分隔。观察到细胞谱系的分叉和多叉。其次,体内细胞类型规范的特征是什么?是否通过在两个不同细胞命运之间快速做出的一系列“决定”来出现新的细胞类型,从而导致尖锐的分支状分支出现在教科书的细胞发育流程图中,或者观察到的情况更为复杂,例如分叉和连续的过渡?Mittnenzweig等。建议答案是“以上所有”。   例如,原始条纹中细胞的发育轨迹急剧分叉,从而使这些细胞成为中胚层或内胚层细胞(图1)。相比之下,新生中胚层中的细胞分化被认为是渐进的和连续的,并且具有两个以上的目的地。该模型还可以推断随时间变化的流量。例如,在E7.1之前,上皮细胞绝大多数转变为获得原始条纹的命运,但在那之后不久,它们大部分转变为获得外胚层的命运。     最后,构成分化的分子因素是什么,单个因素是单独作用还是组合作用?作者声称,除了某些谱系(尤其是淋巴结,心肌细胞和血细胞内皮谱系)外,胃泌尿的主要特征是依赖于重叠的因素组合,以及对承诺的逐步展现。例如,尽管新生中胚层的细胞发展为一系列命运,但这些命运并没有彼此清晰地分开,并且似乎在确定每种命运的转录因子集合之间也没有清晰的界限。作者建议,不是由一系列特定的因素来决定规范的逐步,分层的发展,分子因素的组合以“模糊”且几乎是概率的方式调节多种中胚层的命运。为了突出该程序的精致性,作者进行了一些实验,在这些实验中,推断的关键调控因子被遗传破坏,从而导致受影响谱系的延迟分化。  当然,所有模型都有其局限性,并且该模型也有其自身的特点。首先,其分辨率受到基础数据的限制,尽管只需处理更多的胚胎即可解决此问题。其次,仅根据细胞转录谱的相似性推断其元细胞和血流,因此存在遗漏或误解某些善意关系的风险5。例如,线虫线虫秀丽隐杆线虫的特别迅速的变化使得人们无法在“伪时间”内重建谱系,即按发育阶段而不是实时年龄对细胞进行排序6。三,模型忽略了细胞的胚胎内的空间坐标,以及其实际的血统关系,是越来越适合于测量和记录,分别发展的两个关键方面7,8。  尽管有这些限制,但由Mittnenzweig等人开发的小鼠胃排泄模型。令人印象深刻,并显示了尽管进行了离散采样,如何可以恢复复杂分化景观的连续图。连同刊登在过去几年其他工作3,6,9,它代表着路径细胞的内心世界完全理解上在这个最重要的时期动物的生活带来实质性的一步10。 相关文章:人类胚胎的第一个完整模型点击查看:更多有关生物学文章更多医学分类文章使用福昕文档翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
  • 五一假期都来了,你还不会免费翻译pdf文档?
    五一倒计时第3天!想好去哪些地方游玩了吗?今年五一小长假足足有5天,当然了有些胆大的小伙伴,估计有个9天小假期,不管几天美好的假期可不能让加班给耽误了!还不知道如何高效翻译PDF文档的小伙伴,不凡看看这免费的文档翻译教程吧。 使用福昕翻译官网,选择【文档翻译】功能,页面介绍支持PDF、Word、PPT、Excel常用格式文件上传翻译,点击【免费上传】上传文档翻译。 文档上传后是下图页面,可选择翻译的需求和翻译语言(默认翻译中文),确认后点击【开始翻译】。 小编选择的是翻译日语,立马得到译文,在线预览可以选择左右对比和上下双语译文,看下图翻译后排版很整齐很舒适,还可以下载保留原文格式的译文。 两步操作,快速得到译文,上传文档—开始翻译,操作简单,还可以免费翻译PDF、Word、PPT、Excel格式,教程就摆在这了,一起高效解决文档翻译,迎接五一到来吧! 点这: 解决图片翻译 专业人工在线翻译
  • 磁场弯曲的黑洞喷流
       磁场对银河星团的大规模影响尚不清楚。来自MeerKAT射电望远镜的图像表明,这样的磁场可以使从银河星团中大量黑洞喷出的粒子的喷射流弯曲。乔迪普·巴吉(Joydeep Bagchi) PDF版本超质量黑洞(SMBH)比太阳重数百万至数十亿倍,几乎在所有大质量星系的中心潜伏。在我们的宇宙邻居中,大多数银河系SMBH处于非活动状态。然而,一些非常活跃,在整个电磁波谱释放巨大的能量作为物质落入它们在重力作用下1 - 3。活跃SMBH的一些壮观表现是射电星系-射出两个强大的,高度准直的物质射流的星系,它们发射无线电波。这些无线电射流被认为是发射,聚焦和形状由磁场4 - 6,但该方法的直接证据是有限的(见go.nature.com/3xvingm)。现在,在Chibueze等人在Nature上的论文。图7报告了在银河星团中这种射流与磁场之间相互作用的观察结果。在射电星系中,许多观察到的辐射是由电子产生的,这些电子以接近光速的速度喷射到银河系SMBH附近。周围气体中的磁场使这些粒子遵循圆形路径,并在此过程中发出无线电波。这些场还将粒子聚集在一起,并将它们聚焦成两个狭窄的射流。如果不受干
  • 如何在线翻译,把pdf翻译成中文?
    怎么使用pdf文档大家都知道,那如何把pdf翻译成中文你会吗?今天给大家一个超简单翻译教程,两个操作一键就将pdf翻译成中文,不信就继续看看。声明一下小编不是翻译专家,今天一键翻译的诀窍就再于【福昕翻译】,打开福昕翻译官网然后点击【文档翻译】功能,下有演示步骤图。在文档翻译功能页,将文档完成上传,上传后页面为下图,可以选择文档翻译需求和翻译语言,最后点击【开始翻译】就可以了。 翻译完成,可以对翻译后的文档操作在线查看和下载译文,下图为下载“高保真”(高保真=保留原文样式和排版)的中文译文,我做了标记,左边为英文原文,右边为翻译后的中文译文,保留原文样式阅读体验非常棒。 翻译到这就结束啦,打开福昕翻译官网上传文档点击开始翻译,两步一键就可以将pdf文档翻译成中文了,操作简单而且翻译快速,PDF、Word、PPT、Excel常用格式都支持翻译,最重要的是可免费翻译使用,这绝对是翻译党的“福星”了。
  • 闪电和微弱的放电产生可净化大气的分子
    Lightning and subvisible discharges produce molecules that clean the atmosphere by Pennsylvania State University闪电和微弱的放电产生可净化大气的分子由 美国宾夕法尼亚州立大学 Nitrogen, oxygen and water vapor molecules are broken apart by lightning and associated weaker electrical discharges, generating the reactive gases NO, O3, HO2, and the atmosphere's cleanser, OH. Credit: Jena Jenkins, Penn State氮,氧和水蒸气分子被雷击和相关的较弱的放电破坏,产生反应性气体NO,O3,HO2和大气清洁剂OH。图片提供:宾州州立大学Jena JenkinsLightning bolts break apart nitrogen and oxyg
  • 五一假期游玩攻略之一图片翻译;翻译教程
    五月马上来临,五一假期都打算去哪里游玩呢?都做好攻略了吗?网络上不少热心网友出了各种攻略,包括“避堵攻略”、“出行攻略”、“游玩攻略”等等,但是有一点可能容易被忽略,比如说外出旅游时遇到外语路标,特色餐厅的外语餐单以及临时老板任务和小朋友的英语作业怎么办?今天小编给大家分享一个特别的攻略—翻译攻略!图片翻译,拍照即翻微信搜索“福昕翻译小程序”,进入小小程序后选择【图片转文字】功能,可拍摄或上传图片进行翻译,原图的内容将被识别提取,可操作自定义段落翻译、复制,译后也可进行编辑,27国语言互译。下图依次为:选择翻译功能拍摄/上传图片;图片提取文字;翻译后文档翻译,一键全翻 打开福昕翻译官网使用【文档翻译】功能,将需翻译的文档上传,选择翻译服务和翻译的语言,最后点击开始翻译按钮,文档将快速进入翻译,翻译后可以在线预览查看也可以下载保留原文排版的“高保真”译文。下图依次为:福昕翻译官网首页;“高保真”文档翻译下载(译前后对比图)按需翻译,如果是在户外,翻译时可以选择使用福昕翻译小程序,打开手机就可以下载拍照即翻,如果想要翻译文档查看之类的还是电脑端查看比较方便而且效