福昕翻译

>

微生物

肠道菌群重组以帮助感染后防御
肠道内的微生物可以帮助阻止感染,但是所涉及的机制尚不完全清楚。现已发现,感染后微生物群落的变化提高了抵抗有害细菌的分子水平。 梅利莎·肯德尔(Melissa M.Kendall)和凡妮莎·斯佩兰迪奥(Vanessa Sperandio) 哺乳动物宿主与其肠道菌群(位于小肠和大肠中的微生物群落)之间的复杂相互作用会影响宿主的健康和疾病易感性。深入研究驱动这种相互作用的机械关系的一个主要挑战是微生物群中物种的高度多样性,这导致了每个个体1所特有的微生物特征,就像指纹一样。人们越来越认识到,肠道微生物群与引起疾病的微生物(病原体)对肠道定殖产生抗性有关。然而,对该现象的许多研究在很大程度上是描述性的,并且倾向于仅将特定的微生物群组成与健康或疾病状态相关联2。Stacy等人在《Cell》中写作。图3给出了详细的机制,揭示了微生物区系的变化如何驱动病原体入侵的抗性。 人们普遍认为微生物群会阻碍肠道病原体的定殖4,并且有几条证据支持肠道微生物群可能在限制病原体生长方面发挥作用的观点。例如,人们长期和/或高水平使用抗生素会促进艰难梭菌5(Clostridium difficile 5)的繁殖,这种细菌会引起严重的腹泻和结肠发炎,从而导致患病和死亡的高风险。微生物群落中物种多样性的低复杂性是工业化国家居民普遍观察到的特征,与传染病易感性增强有关6。此外,已经用抗生素治疗或在无菌条件下饲养的小鼠,因此缺乏微生物群,比具有正常微生物群的小鼠更容易受到肠道病原体的侵害7。 相反,某些微生物群落可能导致病原体的生长或在更高的毒力下感染。例如,不同的小鼠微生物群决定了对病原体啮齿动物柠檬酸杆菌的敏感性,这会导致结肠中一种异常生长,称为增生8。从易感动物到非易感小鼠的微生物菌群移植引起对啮齿类动物的感染易感性,而从非易感动物到易感动物的微生物菌群移植产生对感染的抵抗力8。流行病学证据表明,食源性空肠弯曲菌对感染的易感性在瑞典人中,取决于微生物群落的物种组成9。报道还强调了某些肠道病原体,例如小肠沙门氏菌和啮齿类梭状芽胞杆菌,如何利用宿主菌群线索来精确调节其代谢,并通过呼吸作用来产生能量。通过感测和响应这些线索,病原体也可以增加或其毒性剧目,其中使用定殖宿主的部件的减少表达10 - 12。 令人兴奋的研究开始研究微生物群在感染中的作用。这些工作不仅仅记录了感染与物种存在与否之间的相关性,或者物种组成的差异。它开始揭示微生物群的特定组成提供抵抗感染或帮助入侵病原体的机制。 Stacy及其同事报告说,在感染肠道病原体肺炎克雷伯菌后,小鼠抵抗这种细菌随后感染的能力增强(图1)。为了试图理解负责的途径,作者分析了微生物DNA,评估了感染后微生物群和幼稚微生物群(之前未接触过细菌的微生物群)的元基因组(在社区中检测到的所有微生物基因),以确定微生物如何可能会导致定植抗性。研究小组发现,编码牛磺酸等含硫分子代谢所需蛋白质的基因在感染后微生物群中比在原始微生物群中富集得多。 图1 | 肠道感染如何导致改变,从而增强防御能力。Stacy等。3报道了小鼠中诸如肺炎克雷伯菌等有害细菌的感染如何影响驻留的肠道细菌。a,得益于细胞色素氧化酶,肺炎克雷伯氏菌可以在哺乳动物的肠腔内生长并感染。该酶使细菌利用宿主肠道中的氧气通过有氧呼吸产生能量。b,被肺炎克雷伯菌感染后,牛磺酸分子的水平在肠道中上升。牛磺酸是由胆汁酸代谢产生的,胆汁酸从肝脏分泌到肠内。Stacy及其同事提供的遗传证据表明,感染后,可以使用牛磺酸的常驻细菌在肠道中变得更加常见。当细菌代谢牛磺酸时,它们会产生硫化氢气体。c,硫化氢抑制有氧呼吸,从而可以阻止有害细菌的生长。 胆汁酸是在肝脏中制成的,并储存在胆囊中,它们是牛磺酸在肠道中的主要来源。它们被分泌到肠中,以帮助脂肪食物和油脂的消化。微生物群的特定成员分解胆汁酸,释放出牛磺酸,牛磺酸可作为其他肠道细菌的能源。牛磺酸在细菌代谢途径中的使用产生了作为副产物的化合物硫化氢。在高浓度下,硫化氢可以抑制细胞色素氧化酶的活性,该酶催化氧依赖性(有氧)呼吸过程中发生的反应。 入侵的肠道病原体经常利用宿主产生的氧气通过有氧呼吸获得能量,从而在其定植宿主的努力中立足13。Stacy及其同事报道了牛磺酸介导的感染后微生物菌群产生的硫化物分子(包括硫化氢)与伴随的病原体呼吸抑制(最终将抑制病原体的感染)之间存在相关性。作者证明了对两种病原体肺炎克雷伯菌和啮齿类克雷伯菌的这种作用,这表明感染后的微生物群对入侵者提供了广泛的保护。值得注意的是,Stacy等。报告指出,在动物的饮用水中补充牛磺酸会产生类似的效果。牛磺酸是能量饮料的常见成分,这一发现对牛磺酸在肠内的作用很有趣。对此类机制的更深入了解可能为微生物群的精确操纵打开了大门,以抗击某些传染病。 这些结果表明,膳食补充某些代谢物,例如牛磺酸,可能提供一种重新编程微生物群的“新陈代谢”以增强对病原体抵抗力的方法。这项研究和其他研究确定了微生物群影响肠道病原体代谢,呼吸和毒力的机制,代表了宿主-微生物群-病原体相互作用领域的关键一步。 点击查看:更多有关生物学文章 更多医学分类文章 使用全文翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:nature
2021-03-17 19:00:18
研究人员发现世界海洋中巨大的碳氢化合物循环
加利福尼亚大学 哈里森·塔索夫(Harrison Tasoff)撰写 -圣巴巴拉研究人员从Sargasso海中获取水样。图片来源:David Valentine 碳氢化合物和石油在环境科学中几乎是同义词。毕竟,石油储备几乎涵盖了我们遇到的所有碳氢化合物。但是,将其起源追溯至生物来源的少数几种碳氢化合物的生态作用可能要比科学家最初怀疑的更大。加州大学圣塔芭芭拉分校和伍兹霍尔海洋学研究所的一组研究人员对这个以前被忽视的海洋学领域进行了调查,以寻找被忽视的全球周期的迹象。他们还测试了海洋生物的存在可能如何影响海洋对石油泄漏的反应。“我们已经证明了海洋中发生了大规模而迅速的碳氢化合物循环,这与海洋对石油输入的反应能力不同,”地球部诺里斯总统主席大卫·瓦伦丁教授说。 UCSB的科学。由他的研究生Eleanor Arrington和Connor Love领导的这项研究发表在《自然微生物学》上。2015年,由剑桥大学的科学家领导的国际团队发表了一项研究,证明了碳氢十五烷是由海洋蓝细菌在实验室培养物中产生的。研究人员推断该化合物可能在海洋中很重要。Valentine解释说,这种分子似乎可以缓解弯曲膜的应力,因此在诸如叶绿体之类的东西中发现了这种分子,其中紧密堆积的膜需要极高的曲率。某些蓝细菌仍会合成该化合物,而其他海洋微生物则很容易将其消耗能量。瓦伦丁(Valentine)与伍兹霍尔(Woods Hole)的克里斯·雷迪(Chris Reddy)共同撰写了两页的评论文章,并决定与Arrington和Love进一步探讨这个话题。他们于2015年参观了墨西哥湾,然后于2017年参观了西大西洋,以收集样本并进行实验。研究小组从大西洋的营养贫乏地区采样了海水,该地区被称为Sargasso海,以从墨西哥湾涌入的浮游海藻海藻命名。情人说,这是美丽,清澈的蓝色海水,中间夹着百慕大水。获得样品显然是一项相当棘手的工作。由于十五烷是柴油燃料中的常见碳氢化合物,因此该团队必须采取额外的预防措施,以避免船舶本身受到污染。他们让船长将船转成风,以免尾气污染样品,并且他们分析了柴油的化学特征,以确保它不是发现的任何十五烷的来源。在海洋的上层生产并消耗了大量的十五烷。图片来源:David Valentine而且,当研究人员收集海水时,没有人可以在甲板上吸烟,做饭或油漆。“这很重要,”瓦伦丁说,“我不知道您是否在船上呆了很长时间,但每天都要油漆。这就像金门大桥:从一个起点开始结束,直到到达另一端,是时候重新开始了。”这些预防措施奏效了,研究小组回收了原始海水样品。共同首席作者洛夫说:“ 2017年探险之后,站在伍兹霍尔的气相色谱仪前,很明显样品是干净的,没有柴油的迹象。” “十五烷是无误的,即使在[我们]运行的前几个样本中,也已经显示出清晰的海洋学模式。”由于它们在世界海洋中的数量众多,洛夫继续说道:“仅两种类型的海洋蓝细菌每年向海洋中添加的碳氢化合物就比向海洋中其他所有类型的石油输入(包括天然油)的总和多出500倍渗漏,漏油,燃料倾倒和土地流失。” 这些微生物每年总计生产300-600百万公吨的十五烷,这个数量比所有其他来源释放的130万吨的碳氢化合物相形见war。尽管这些数量令人印象深刻,但它们有些误导。作者指出,十五烷循环跨越地球表面的40%或更多,并且载有超过一万亿个四环的十五烷的蓝细菌细胞悬浮在世界海洋的阳光照射下。但是,这些细胞的生命周期通常少于两天。结果,研究人员估计,在任何给定时间,海洋仅包含约200万吨的十五烷。情人解释说,这是一个快速旋转的轮子,因此在任何时间点的实际数量并不是特别大。他说:“每隔两天,您就会生产和消耗海洋中的所有十五烷。”将来,研究人员希望将微生物的基因组学与其生理和生态联系起来。该团队已经拥有数十种生物的基因组序列,这些生物成倍增加以消耗其样品中的十五烷。瓦伦丁说:“那里的信息量令人难以置信,而且我认为这揭示了我们对许多消耗碳氢化合物的生物的生态学知之甚少。”在确认了这种生物烃循环的存在和程度之后,研究小组试图解决其存在是否会引发海洋分解泄漏的石油的问题。Arrington解释说,关键的问题是这些大量消耗十五烷的微生物是否在溢油清理过程中作为资产。为了对此进行研究,他们在距墨西哥湾天然石油渗漏不同距离的海水中添加了戊烷(一种类似于十五烷的石油烃)。在海洋中循环的十五烷的数量使石油中碳氢化合物的输入相形见war。但是,参与十五烷循环的微生物不太可能处理来自石油的碳氢化合物的化学复杂性。图片来源:David Valentine 他们测量了每个样本的总体呼吸,以观察食用戊烷的微生物繁殖所需的时间。研究人员假设,如果十五烷循环确实也引发了微生物消耗其他碳氢化合物的作用,那么所有样品应以相似的速率繁殖。但是事实并非如此。来自油渗流附近的样品迅速形成水华。瓦伦丁说:“在加入戊烷的大约一周内,我们看到了数量庞大的种群。” “而且,距离越远,速度就越慢,直到在北大西洋外出时,您可以等待几个月,再也看不到花开。” 实际上,在马萨诸塞州伍兹霍尔的工厂进行考察之后,阿灵顿不得不留下来,继续对来自大西洋的样品进行实验,因为这些花的出现花了很长时间。有趣的是,研究小组还发现了证据,证明属于另一个生命领域的细菌古细菌也可能在十五烷循环中起作用。共同主要作者阿灵顿说:“我们发现,尚未在实验室驯化的一群神秘的,全球丰富的微生物可能会被表层海洋中的十五烷所刺激。”结果引起了一个问题,即为什么存在一个巨大的十五烷循环似乎对石化戊烷的分解没有影响。瓦伦丁说:“石油与十五烷是不同的,您需要了解它们之间的差异以及实际上组成石油的化合物,才能了解海洋微生物对它的反应。”最终,微生物通常消耗戊烷的基因与十五烷所使用的基因不同。阿灵顿说:“与蓝细菌产生的十五烷相比,生活在百慕大近海的清澈水中的微生物接触石化戊烷的可能性要小得多,因此携带戊烷消耗的基因的可能性也较小。”Valentine继续说,不同微生物的负荷可以消耗十五烷,但这并不意味着它们也可以消耗其他碳氢化合物,特别是考虑到石油中存在的碳氢化合物结构多样。海洋生物生产的普通碳氢化合物少于十二种,包括十五烷和甲烷。同时,石油包含成千上万种不同的碳氢化合物。更重要的是,我们现在看到能够分解复杂石油产品的生物倾向于大量生活在天然石油渗漏附近。当海洋中的微生物种群受到特定地理区域中特定能源的限制时,情人将这种现象称为“生物地理引发”。他说:“我们在这项工作中看到的是十五烷与石油之间的区别,这对于理解不同的海洋地区将如何应对石油泄漏非常重要。”象Sargasso海这样的营养贫乏的旋流占地球表面的40%。但是,无视土地,仍然留下了地球30%的土地去探索其他生物碳氢化合物循环。瓦伦丁认为,生产率较高的地区的过程将更加复杂,并且可能为石油消费提供更多的动力。他还指出,大自然的生物烃生产蓝图有望为开发下一代绿色能源做出努力。 点击:查看更多生物学文章 查看更多医学类文章 试用免费版文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-05 19:59:47
“铁人”细菌如何帮助保护环境
How 'Iron Man' bacteria could help protect the environment“铁人”细菌如何帮助保护环境by Michigan State University密歇根州立大学 This Geobacter cell—which looks a bit like a gray peanut in this microscope image—is speckled with a dark coating of cobalt minerals that would be toxic to many organisms. Credit: Hunter Dulay, MSU这个地球细菌细胞在显微镜图像中看上去有点像灰色的花生,上面散布着深色的钴矿物质,对许多生物体都有毒。图片来源:MSU的Hunter Dulay When Michigan State University's Gemma Reguera first proposed her new research project to the National Science
2021-01-11 19:12:52