福昕翻译

>

PDF文档翻译

研究发现儿童饮食对终身有影响
Study finds childhood diet has lifelong impact研究发现儿童饮食对终身有影响 by University of California - Riverside加州大学河滨分校 Study in mice finds high-fat, high-sugar diet has long-lasting effects on the microbiome. Credit: UCR对小鼠的研究发现,高脂,高糖饮食对微生物组具有持久的影响。信用:UCR Eating too much fat and sugar as a child can alter your microbiome for life, even if you later learn to eat healthier, a new study in mice suggests.一项新的对老鼠的研究表明,即使小时候吃太多的脂肪和糖,也会改变你的微生物组的生活,即使你以后学会饮食更健康。 The study by UC Riverside researchers is one of the first to show a significant decrease in the total number and diversity of gut bacteria in mature mice fed an unhealthy diet as juveniles.加州大学河滨分校的研究人员是第一批表明以不健康饮食作为未成年人喂养的成熟小鼠肠道细菌总数和多样性显着减少的研究之一。 "We studied mice, but the effect we observed is equivalent to kids having a Western diet, high in fat and sugar and their gut microbiome still being affected up to six years after puberty," explained UCR evolutionary physiologist Theodore Garland.UCR的进化生理学家西奥多·加兰德(Theodore Garland)解释说:“我们研究了小鼠,但是观察到的效果相当于孩子们吃了西方饮食,脂肪和糖分很高,而且肠道微生物组在青春期后的六年内仍然受到影响。” A paper describing the study has recently been published in the Journal of Experimental Biology.最近在《实验生物学杂志》上发表了一篇描述该研究的论文。 The microbiome refers to all the bacteria as well as fungi, parasites, and viruses that live on and inside a human or animal. Most of these microorganisms are found in the intestines, and most of them are helpful, stimulating the immune system, breaking down food and helping synthesize key vitamins.微生物组是指在人类或动物体内和内部生活的所有细菌以及真菌,寄生虫和病毒。这些微生物大多数都在肠道中发现,它们中的大多数对刺激免疫系统,分解食物并帮助合成关键的维生素很有帮助。 In a healthy body, there is a balance of pathogenic and beneficial organisms. However, if the balance is disturbed, either through the use of antibiotics, illness, or unhealthy diet, the body could become susceptible to disease.在健康的身体中,病原体和有益生物之间存在平衡。但是,如果通过使用抗生素,疾病或不健康的饮食来破坏平衡,则身体可能容易患病。 In this study, Garland's team looked for impacts on the microbiome after dividing their mice into four groups: half fed the standard, 'healthy' diet, half fed the less healthy 'Western' diet, half with access to a running wheel for exercise, and half without.在这项研究中,Garland的研究小组将小鼠分为四组,研究了对微生物组的影响:一半进食标准的“健康”饮食,一半进食较不健康的“西方”饮食,一半进食运动的跑轮,还有一半没有。 After three weeks spent on these diets, all mice were returned to a standard diet and no exercise, which is normally how mice are kept in a laboratory. At the 14-week mark, the team examined the diversity and abundance of bacteria in the animals.在这些饮食中度过了三周之后,所有小鼠都恢复了标准饮食并且不进行运动,这通常是将小鼠饲养在实验室中的方式。在第14周的时候,研究小组检查了动物中细菌的多样性和丰富性。 They found that the quantity of bacteria such as Muribaculum intestinale was significantly reduced in the Western diet group. This type of bacteria is involved in carbohydrate metabolism.他们发现,在西方饮食组中,诸如肠杆菌的细菌数量显着减少。这种细菌参与碳水化合物的代谢。 Analysis also showed that the gut bacteria are sensitive to the amount of exercise the mice got. Muribaculum bacteria increased in mice fed a standard diet who had access to a running wheel and decreased in mice on a high-fat diet whether they had exercise or not.分析还表明,肠道细菌对小鼠的运动量敏感。喂养进食了可以运行滚轮的标准饮食的小鼠中的鼠毛细菌增加,而无论是否运动,高脂饮食的小鼠中的鼠毛菌减少。 Researchers believe this species of bacteria, and the family of bacteria that it belongs to, might influence the amount of energy available to its host. Research continues into other functions that this type of bacteria may have.研究人员认为,这种细菌及其所属的细菌家族可能会影响宿主的可用能量。对这种细菌可能具有的其他功能的研究仍在继续。 One other effect of note was the increase in a highly similar bacteria species that were enriched after five weeks of treadmill training in a study by other researchers, suggesting that exercise alone may increase its presence.另一个值得注意的影响是,在其他研究人员的一项研究中,经过五周的跑步机训练后,高度相似的细菌物种增加了,这表明单独运动可能会增加其存在。 Overall, the UCR researchers found that early-life Western diet had more long-lasting effects on the microbiome than did early-life exercise.总体而言,UCR研究人员发现,早期西方饮食对微生物组的影响远比早期运动更为持久。 Garland's team would like to repeat this experiment and take samples at additional points in time, to better understand when the changes in mouse microbiomes first appear, and whether they extend into even later phases of life.Garland的团队想重复此实验,并在其他时间点进行采样,以更好地了解小鼠微生物群的变化何时首次出现,以及它们是否延伸到生命的后期。 Regardless of when the effects first appear, however, the researchers say it's significant that they were observed so long after changing the diet, and then changing it back.研究人员说,无论何时开始出现这种影响,很重要的一点是,在改变饮食然后再改变饮食之后,很长时间才观察到它们。 The takeaway, Garland said, is essentially, "You are not only what you eat, but what you ate as a child!"加兰德说,外卖实质上是:“您不仅是所吃的东西,而且还是您小时候吃的东西!”点击: 查看更多生物学文章 查看其他分类文章 查看更多双语译文文章 使用双语译文翻译免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-05 19:49:45
心脏骤停中的ECMO:文学叙事回顾(结论)
查看心脏骤停中的ECMO:文学叙事回顾7. 神经学结果不管插管时的心率如何,ECPR都能优化因室颤和/或心动过速(VF / VT)导致难治性CA患者的器官灌注。通过达到血液动力学稳定性,ECPR可以阻止缺血性病变的发展,而不必获得自发性循环(ROSC)的恢复。因此,它为纠正长时间的心肺复苏过程中出现的严重代谢紊乱提供了时间,并使治疗可能导致难治性VF / TV持续的潜在病因成为可能。这些稳定策略与难治性CA患者的生存改善和令人满意的神经学预后有关[10,69,79]。此外,ECPR能够使患者在36℃的恒定温度下稳定24小时[80]。在明尼苏达大学的ECPR队列研究中,在开始ECMO之前受益于CPR协会(持续20至29分钟)的患者中,有100%的患者神经功能预后良好。常规心肺复苏组的结果微乎其微,其中只有24%的患者存活下来并具有令人满意的神经学预后。与传统的心肺复苏术组相比,心肺复苏术显示了最长98分钟的心肺复苏持续时间。ECMO发作前的缺血性损伤似乎是预测预后的决定性因素。在同一队列中,超过29分钟的CPR,每10分钟的存活率下降25%[81]。先前的研究还表明,CPR的持续时间与ECPR期间的生存之间存在联系[4,16,82]。ECPR可以在延长心肺复苏后提高生存率,但是避免对那些仅使用常规心肺复苏就可以幸免的人造成伤害是值得关注的。 OHCA受益于常规CPR的患者的最新研究表明,由医疗专业人员在最长28至39分钟的CPR中,有幸存的神经系统状态令人满意的患者中有99%接受了ROSC [83-86]。大多数ECPR计划都要求将患者运送到医院植入ECMO。因此,至关重要的是估计传输指示的时间。确实,将患者转移至心脏骤停状态可能会降低复苏的有效性,并有可能阻止某些患者的生存。雷诺兹等。 [85]研究了从观察性研究中收集到的符合ECPR标准的患者中晚期疗法与转运风险之间的关系。他们包括年龄在18至65岁之间的患者,在有证人在场的情况下发生心脏骤停,在10分钟内开始进行心肺复苏,并且没有心搏停止作为最初的心律。他们发现90%的神经功能预后良好的幸存者在21分钟内有ROSC,如果CPR延长至20分钟以上,则存活的神经功能预后良好的可能性为8.4%。作者建议在进行ECPR运输之前,先进行21分钟的标准复苏。在临床实践中,建议立即转运对最初的复苏措施无反应的心脏骤停患者是合理的。实际上,在欧洲的建议中,执行第一批专门的复苏措施大约相当于10分钟。因此,建议将这段时间用于考虑ECPR的运输。如前所述,在“转移决定”和“有效转移”之间加上最短的时间后,可以将转移时间提高到大约20分钟的CPR。一些中心建议使用自动按压板进行胸部按压。但是,在最近的荟萃分析中,证据水平并不表明包括机械式胸部按压设备的CPR算法优于传统的手动胸部按压技术。在无法进行高质量的手动胸部按压或危险的情况下(例如,很少有救生员,低温CA中的救护人员长时间使用CPR,在救护车中,受过训练的医疗服务提供者使用的机械胸部按压器)是手动胸部按压的合理替代品。在血管造影室或ECPR准备期间)[87]。此外,其他研究者表明,在使用装有机翼方法的担架上移动住院的CA患者时,胸部按压可以产生高质量的胸部按压[88]。ECPR成功的时间竞赛对此类协议的实施具有重要意义。对于目前的院前复苏技术,建议建议在实施ECMO治疗难治性OHCA之前,最佳的CPR时间间隔为30分钟。但是,ECPR的生存益处可能会超过60分钟。因此,ECPR程序应旨在在不到30分钟的时间内使可插管的患者数量最大化,而不必排除复苏时间较长的患者。院前护理的未来优化还可以提高与ECPR相关的生存率。院前CPR策略可改善CPR的灌注或减少患者的代谢需求,可延长有效CPR的时间,从而延缓缺血性损伤的发作。院前ECPR的启动也可以提供快速的稳定。迄今为止,最近发表了关于ECPR在OHCA患者中应用的最大研究。它提供了有关该策略有效性的新信息。 Bougouin等。 [16]报道了巴黎大都会地区超过13,000例OHCA病例。在接受常规心肺复苏术的12396名患者中,有8.6%(1061)可以存活出院,而523名ECPR患者中只有8.4%(44)。尝试进行ECPR,但11%(58)的患者无效。 ECPR组中有利于生存的因素包括短暂恢复自发性循环(ROSC)以及ECPR之前的最初令人震惊的心律。应当指出,院前ECPR与入院后接受ECPR的患者相比,与生存率更高(OR 2.9,95%CI 1.5–5.9,p = 0.002)和更有利的神经系统结果(OR 2.9,95%CI 1.3–6.4,p = 0.008)相关。但是,这项研究有很多局限性,包括选择偏见。启动ECPR的决定是由每个临床医生自行决定的,而不是严格按照预先建立的算法,从而提供了大量潜在的混淆因素。 ECPR患者基线描述的差异表明了这一点。目击者较年轻且更倾向于从CPR中受益(81%vs. 49%,p <0.001),但更相关的是,他们接受了超过30分钟的长时间CPR(99%vs. 77%,p <0.001) 。作者试图通过多元分析(OR 1.3,CI 95%0.8-2.1,p = 0.24)或倾向分析(OR 0.8,95%CI 0.5-1.3,p = 0.41)校正已知的混杂因素,但是他们无法确定ECPR是否与医院环境中的生存改善相关。研究亚组之间存在许多差异,尤其是在没有ROSC的患者和具有不可电击节律的患者之间。 ECPR可能在这些亚组中表现出不同的结果,也许将来需要专门研究对其进行研究[16]。更相关的是,未检查神经系统结局和长期生活质量。希望不将分析局限于医院的死亡率,而要分析诸如功能恢复和具有可接受的神经后遗症的长期存活的因素[89,90]。这项研究将继续成为机械支持设备的信奉者,以及他们在改善心脏骤停过程中可能发挥的作用方面。这将刺激该领域的进一步研究,以纠正在患有OHCA的患者中观察到的不良结果。受益于ECPR的患者与接受常规RCP治疗的患者在生存率上没有统计学上的显着差异,这需要重新评估ECPR在OHCA患者中的作用。这最后的出版物确实具有许多品质,包括大量患者,参与小组的功能经验以促进ECPR的迅速实施及其提供“真实”数据的多中心观察设计。最后,ECPR是一种机械支持形式,需要特别复杂和庞大的人力和技术资源组织。它还需要在极端条件下进行插管的从业人员非常高的专业知识。因此,对于维持这些类型的计划至关重要的是,要确保有足够的干预措施,并允许相关专业人员的大量接触,以维持高质量的护理标准。 8. 结论CA仍然是常见的死亡原因和主要的公共卫生问题。迄今为止,常规的心肺复苏术是唯一可用于改善这些患者预后的有效复苏程序。 ECMO是一项复杂且价格相对较高的技术,需要专业知识。因此,它不能在所有医院都使用,而必须在定期执行这些程序的高容量中心进行。ECPR可使传统CPR难治的CA患者获得血液动力学和呼吸稳定,并通过保留器官灌注来开始治疗CA的根本原因。但是,目前的证据并不支持在所有难治性CA患者中常规使用ECPR的建议。因此,似乎关键适当选择那些谁可能会从它的使用中受益患者。这可能包括存在即将死亡风险的患者,这些患者具有专门设计的评分,可以预测与使用ECPR相关的生存获益。使用它的理想好处将是进行足够的复苏,从而促进中长期生存可接受的神经系统结果。最后,通过额外的医院ECPR来最佳管理难治性CA患者的方案仍然是研究的活跃领域。 作者贡献:A.D.C.设计研究,选择文章,收集数据并撰写手稿。 B.A.选择文章,收集数据并撰写手稿。多发性硬化症。写手稿,N.M。收集数据并写手稿C.B.收集数据并写手稿K.B。设计研究并撰写了R.G.设计研究,选择文章,收集数据并撰写手稿。所有作者均已阅读并同意该手稿的发行版本。资金:这项研究没有获得外部资金。数据可用性声明:不适用。利益冲突:作者声明没有利益冲突。参考文献(展示部分文献,可去原文章查看全部)1. Wong C.X .;布朗,答:刘德华; Chugh,S.S .;阿尔伯特,C.M .;卡尔曼(J.M.);桑德斯(Sanders),《心脏猝死的流行病学:全球和区域观点》。心肺圈。 2019,28,6-14。 [CrossRef]2. 严S.甘Y;江N.王荣;陈Y罗Z.宗庆;陈珊; Lv,C.接受心肺复苏的成人门诊心脏骤停患者的总生存率:系统评价和荟萃分析。 Crit Care 2020,24,61. [CrossRef] [PubMed]3. 陈Y林建伟;于慧Ko,W.J .;Jerng,J.S.; Chang,W.T .;陈伟杰;黄南昌; Chi,N.H .;王超等。成人体外循环辅助心肺复苏术与常规心肺复苏术在院内心脏骤停的成年人中的关系:一项观察性研究和倾向性分析。柳叶刀2008,372,554–561。 [CrossRef]4. Wengenmayer,T。罗姆巴赫,S。 F.拉姆斯霍恩; Biever,P.;波德角; D.Duerschmied; Staudacher,D.L.低流量时间对体外循环心肺复苏(eCPR)后存活的影响。暴击护理2017,21,157。[CrossRef] [PubMed]5. 坂本N. Morimura;长浅井Y.横田奈良市长谷Y. Tahara; T. Atsumi;集团,S.-J.S。成人院外心脏骤停的体外心肺复苏与常规心肺复苏:一项前瞻性观察性研究。复苏2014,85,762-768。 [CrossRef] [PubMed]6. Le Guen,M。 Nicolas-Robin,A .;卡雷拉,S。 M.Raux; Leprince,P .; B.Riou;O. Langeron。院外难治性心脏骤停后的体外生命支持。暴击护理2011,15,R29。 [CrossRef]7. E.香川;井上,我。川越石原市Y. Shimatani,库里苏(S. Yakama,Y .;戴K; O.Takayuki;永永等。评估使用体外生命支持进行心肺复苏的院内和院外心脏骤停患者的结局和差异。心肺复苏2010,81,968–973。 [CrossRef]8. Danial,P.;哈贾格(D.) Nguyen,L.S .; Mastroianni,C .; Demondion,P .; M·施密特Bougle,A。 J. Leprince,P .;康贝斯;等。经皮与手术股-股-静脉-ECMO:倾向评分匹配研究。重症监护医学。 2018,44,2153–2161。 [CrossRef]9. 贝莱佐(J.M.) Z.Shinar;戴维斯(Davis)公元前Jaski; Chillcott,S。 Stahovich,M .;沃克角; Baradarian,S。Dembitsky,W.急诊医师启动的体外心肺复苏。复苏,2012,83,966-970。 [CrossRef]10. Lamhaut,L .; Hutin,A .; E. Puymirat; Jouan,J .; J.H.拉斐伦; Jouffroy,R .;贾弗里达格隆角;An,K .;杜马斯F.等。院前体外循环心肺复苏(ECPR)策略治疗难治性院外心脏骤停:一项观察性研究和倾向性分析。心肺复苏2017,117,109–117。 [CrossRef]11. Megarbane,B .; Leprince,P.;Deye,N .; Resiere,D。 Guerrier,G。 Rettab,S。西奥多(J.) Karyo,S .;甘杰巴赫(I.) Baud,F.J.体外生命支持难治性心脏骤停的医疗重症监护室的紧急可行性。重症监护医学。 2007,33,758–764。[CrossRef] [PubMed]12. 奥特加·德巴隆(I.)霍恩比(L.谢米(S.D.);Bhanji,F.; Guadagno,E.成年人难治性院外心脏骤停的体外复苏:对国际惯例和结果的系统评价。心肺复苏2016,101,12–20。[CrossRef] [PubMed]13. 唐娜(J.E.);新泽西州约翰逊;格林伍德,J。盖伊斯基(D.F.); Z.Shinar;贝勒佐(J.M.);贝克尔Shah,A.P .; S.T. Youngquist;马林,M.P .;等。美国急诊科体外心肺复苏(eCPR)程序的实践特征:急诊科体外膜氧合(ED ECMO)的最新技术水平。心肺复苏2016,107,38–46。 [CrossRef] [PubMed]14. Poppe,M。韦瑟角; M. Holzer; Sulzgruber,P .;达特勒M. Keferbock; Zeiner,S。 E. Lobmeyr;范·图尔德(R.齐格勒,A .;等。急诊部门利用紧急体外生命支持的“外出就诊”院外心脏骤停候选人发生率:一年回顾。心肺复苏2015,91,131–136。 [CrossRef] [PubMed]15. 王超周N;贝克尔(L.B.);林建伟;于慧Chi,N.H .;南卡罗来纳州Hunag;Ko,W.J .;Wang,S.S .;曾L.J.等。院外心脏骤停的体外心肺复苏的改善结果–与院内心脏骤停的体外抢救的比较。复苏2014,85,1219–1224。 [CrossRef] [PubMed]16. W. Bougouin;杜马斯F. Lamhaut,L .; E.Marijon。 Carli,P .;康贝斯; Pirracchio,R .; N.Aissaoui; N.卡拉姆; Deye,N .;等。院外心脏骤停的体外心肺复苏:一项注册研究。欧元。 《心脏》杂志,2019,41,1-11。 [CrossRef]17. 英国Longo; Ciuffreda,M .;达安德里亚(D’Andrea);礼貌,北; Locher,J。 Denaro,V.全膝关节置换术中的全聚乙烯与金属支持的胫骨组件。膝盖手术。体育Traumatol。关节镜2017,25,3620–3636。 [CrossRef]18. T.M. Atkinson; Ohman,E.M .;奥尼尔(W.W.);Rab,T.;雪茄,J.E.;美国心脏病学院介入科学委员会。进行经皮冠状动脉介入治疗的患者机械循环支持的实用方法:干预观点。 JACC心血管。互动2016,9,871–883。 [CrossRef]19. A.R. Garan; A. Kirtane; Takayama,H.重新设计急性心肌梗死并发心源性休克的患者的护理:“休克团队”。 JAMA Surg。 2016,151,684–685。 [CrossRef]20. Tchantchaleishvili,V.;华盛顿州哈利南;梅西(H.T.)呼吁建立有组织的全州网络来管理急性心肌梗死相关的心源性休克。 JAMA Surg。 2015,150,1025-1026。 [CrossRef]21. A.R. Garan;埃克哈特武田(K.) V.K.托普卡拉; Klerkin,K .;弗里德·J。 A.Masoumi; R.T. Demmer; Trinh,P .; Yuzefpolskaya,M .;等。急性心肌梗死并发心源性休克后短期机械循环支持设备的存活率和断奶能力的预测指标。欧元。心脏J.急性心血管。护理2018,7,755-765。 [CrossRef] [PubMed]22. 穆勒(G. E.弗莱彻; Lebreton,G .;卢伊特(C.E.); J.L. Trouillet; N.布雷乔特; M·施密特Mastroianni,C .;查斯特(J. Leprince,P .;等。急性心梗性心源性休克的VA-ECMO后的ENCOURAGE死亡率风险评分和长期结局分析。重症监护医学。 2016,42,370–378。 [CrossRef] [PubMed]23. 巴拉特(F.帕帕拉多(F.奥洛里兹(美国); Bisceglia,C .;Vergara,P .;西尔伯鲍尔(Silberbauer),J。 N.Albanese。西里杜(M. D'Angelo,G .; Di Prima,A.L .;等。体外膜氧合对心动过速消融的血流动力学支持。大约心律失常电生理。 2016,9,e004492。 [CrossRef] [PubMed]24. 布鲁纳(M.E.);西恩哈特(N. Shah D .;新泽西州Licker; Cikirikcioglu,M .;布罗查德湖Bendjelid,K .; Giraud,R.体外膜氧合支持是电风暴相关心源性休克患者康复的桥梁。上午。 J. Emerg。中2013,31,467.e1–467.e6。 [CrossRef][PubMed]25. Guglin,M .;扎克(M.J.); V.M.巴赞; B.博兹库特; ElBanayosy,A .; Estep,J.D .; J.Gurley;尼尔森(K.)马利亚拉河;G.S. Panjrath;等。成人腹膜动脉ECMO:JACC科学专家小组。J.上午Coll。乙二醇。 2019,73,698–716。 [CrossRef]26. 罗森茨威格(E.B.);布罗迪(D.哥伦比亚特区艾布拉姆斯; Agerstrand,C.L .; Bacchetta,M.体外膜氧合作为第1组肺动脉高压中急性右心衰竭的新型桥接策略。 ASAIO J.2014,60,129–133。 [CrossRef]27. 班菲M. Pozzi;西恩哈特(N.布鲁纳(M.E.);塔索(Dassaux) J.F. Obadia; Bendjelid,K.; Giraud,R.静脉-静脉体外膜氧合:插管技术。 J.索拉克。 Dis。 2016,8,3762–3773。 [CrossRef]28. R.P. Barbaro; F.O. Odetola;肯塔基州基德韦尔;马萨诸塞州帕登;巴特利特(R.H.);戴维斯,医学硕士;安妮奇(GM)医院级体外膜氧合情况与病死率的关系。体外生命支持组织注册表分析。上午。 J.呼吸暴击护理医学。 2015,191,894–901。[CrossRef]29. 布鲁克曼(L.M.);霍尔兹格拉夫(B. K.帕尔默; Frenckner,B.斯德哥尔摩的经验:体外膜氧合的医院间转运。暴击护理2015,19,278。[CrossRef]30. 诺亚,马萨诸塞州;皮克(Geek)芬尼(S.J.);格里菲斯(美国)哈里森(D.A.)格里夫(R.马萨诸塞州萨迪克; Jek Sekhon; D.F. McAuley;英国Firmin;等。转介到体外膜氧合作用中心和2009年严重A型流感(H1N1)患者的死亡率。 JAMA 2011,306,1659–1668。[CrossRef]31. 皮克(Geek) Mugford,M .; Tiruvoipati,R。威尔逊艾伦(E.塔拉尼(M.M.)希伯特(C.L.); A.Truesdale Clemens,F。库珀,北;等。常规通气支持与体外膜氧合治疗严重成人呼吸衰竭(CESAR)的疗效和经济评估:一项多中心随机对照试验。柳叶刀2009,374,1351–1363。 [CrossRef]32. 莫雷特,M。班菲,C。 Sartorius,D .; Fumeaux,T。 Leeman-Refondini,C .; Sologashvili,T。重用,J。 Nowicki,B。Mamode-Premdjee,J。塔索(D.)等。[“移动” ECMO]。版本号中瑞士,2014,10,2368–2374。33. Benzoni,E .;Terrosu,G.;布雷萨多拉塞拉托,F。A. Cojutti;E.米兰; Dado,G .; Bresadola,F.新辅助放化疗联合手术的临床结局和预后因素分析:腹膜内与腹膜外直肠癌。欧元。 J. Cancer Care(Engl。)2006,15,286-292。 [CrossRef] [PubMed]34. 澳大利亚和新西兰体外膜氧合(ANZ ECMO)流感调查员;戴维斯A.琼斯(D.) M. Bailey; Beca,J .;贝洛莫河;北布莱克韦尔;福雷斯特,P。加塔斯(D.) E.格兰杰等。 2009年甲型(H1N1)流感急性呼吸窘迫综合征的体外膜氧合。 JAMA 2009,302,1888-1895年。 [CrossRef]35. 北帕特罗尼蒂; Zangrillo,A .; Pappalardo,F。佩里斯(Peris)Cianchi,G .;布拉斯基,A .; Iotti,G.A .;阿卡丹,A。 Panarello,G .;拉涅利(Vani)等。意大利ECMO网络在2009年甲型H1N1流感大流行中的经验:为严重的呼吸道紧急暴发做准备。重症监护医学。 2011,37,1447-1457。 [CrossRef]36. Lamhaut,L .;Jouffroy,R.; M.Soldan;菲利普(P.德鲁兹贾弗里达格隆角;Vivien,B .;Spaulding,C .; An,K .;等。非外科手术治疗院外难治性心脏骤停的安全性和可行性。心肺复苏2013,84,1525–1529。 [CrossRef]37. 艾布拉姆斯(D. A.R. Garan;阿卜杜里(Abdelbary); Bacchetta,M。巴特利特(R.H.);贝克(J. Belohlavek,J。陈Y范E. N.D.弗格森;等。关于组织成人心衰ECMO计划的立场文件。重症监护医学。 2018,44,717–729。 [CrossRef]38. 班菲M. Pozzi;布鲁纳(M.E.);里加蒙蒂; N. Murith;穆格尼J.F. Obadia;Bendjelid,K .; Giraud,R.静脉动脉体外膜氧合:不同插管技术的概述。 J.索拉克。 Dis。 2016,8,E875–E885。 [CrossRef]39. 吉罗(R.班菲Bendjelid,K.在ECMO静脉插管放置中应强制执行超声心动图检查。欧元。心脏J.影像学杂志2018,19,1429-1430。 [CrossRef]40. 阿罗约Bendjelid,K .;罗伯特·埃巴迪(H.里加蒙蒂;西恩哈特(N. Giraud,R.疑似股骨股静脉静脉体外生命支持中的动脉痉挛。 ASAIO J.,2017,63,e35-e38。 [CrossRef]41. 法国复活委员会,C。法国兴业银行D'anesthesie等,R。法国兴业银行法国法语学校de Chirurgie Thoracique等,C。法兰西大学医学会法国兴业银行;法语国家复活和应急小组法国兴业银行;法兰西复兴社会学院,F。在难治性心脏骤停中使用体外生命支持的适应症指南。法国卫生部。安麻醉神父雷尼姆2009,28,182–190。 [CrossRef]42. 金俊杰;Jung J.S .; Park,J.H .; Park,J.S .; Hong,Y.S .;李世伟一项倾向匹配的研究:预测院外心脏骤停患者良好神经系统结局的体外心肺复苏最佳过渡时间:一项倾向匹配研究。暴击Care 2014,18,535。[CrossRef] [PubMed]43. 雷诺兹J.C. Frisch,A .; J.C. Rittenberger; C.W. Callaway。院外心脏骤停后复苏努力的持续时间和功能结局:我们什么时候应该改用新疗法?发行2013,128,2488-2494。 [CrossRef] [PubMed]点击:查看更多医学文章 使用文档翻译功能 使用图片翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-02-02 20:19:57
常在火星上发现的矿物发现于南极冰层深处
Mineral often found on Mars discovered deep in Antarctic ice常在火星上发现的矿物发现于南极冰层深处by Bob Yirka , Phys.org鲍勃·伊尔卡(Bob Yirka),Phys.org The morphology of mineral grains in deep TALDICE investigated through SEM. Credit: Nature Communications (2021). DOI: 10.1038/s41467-020-20705-z通过扫描电镜(SEM)研究了深层TALDICE中矿物晶粒的形态。图片来源:Nature Communications(2021)。 DOI:10.1038 / s41467-020-20705-z An international team of researchers has found evidence of the mineral jarosite in ice cores extracted from Antarctica. In their paper published in the journal Nature Communications, the researchers describe how the discovery came about and why they believe it could bolster theories regarding the presence of the same mineral on the surface of Mars.一个国际研究人员小组发现了从南极洲提取的冰芯中的矿物黄钾铁矾的证据。在发表于《自然通讯》杂志上的论文中,研究人员描述了这一发现是如何产生的,以及为什么他们相信该发现可以支持有关火星表面存在相同矿物的理论。 Jarosite is very rarely found on Earth—it is generally seen in mining waste that has been exposed to air and rain. The researchers with this new effort were not looking for it in their ice cores—they were focused on minerals in deep ice cores that might help to better understand ice age cycles. But when they came across the yellow- brown mineral, their interest was piqued. X-ray absorption testing and electron microscopy showed it be jarosite.黄铁矿在地球上很少见-通常在暴露于空气和雨水的采矿废物中看到。做出这项新努力的研究人员并没有在冰芯中寻找它,而是专注于深冰芯中的矿物质,这些矿物质可能有助于更好地了解冰龄周期。但是,当他们遇到黄褐色的矿物时,他们的兴趣激起了。 X射线吸收测试和电子显微镜显示它是黄钾铁矾。 The researchers suggest the mineral formed in ice pockets that also held small amounts of dust. Under the ice, they had eroded, the researchers noted. The finding brought to mind another site where jarosite is found—the surface of Mars. It was found there by the Opportunity rover back in 2004 and has been found to be abundant. Finding jarosite on Mars created a lot of excitement at NASA and around the world, because prior research had shown that water must be present for jarosite formation.研究人员认为,冰袋中形成的矿物质还含有少量的灰尘。研究人员指出,它们在冰下侵蚀了。这一发现使我想到了另一个发现黄钾铁矾的地点-火星表面。早在2004年,Opportunity流浪者就在那发现了它,并且发现它很丰富。在火星上发现黄钾铁矾在NASA和全世界引起了极大的兴趣,因为先前的研究表明,形成黄钾铁矾必须存在水。 The discovery of jarosite on Mars led scientists to come up with theories to explain how it might have originated. Some suggested it might have been left behind as salty water evaporated. Others suggested that Mars might have been covered by a massive ice blanket billons of years ago. They further suggested that jarosite could have formed in ice pockets. That would have been possible, they noted, if the ice blanket grew slowly with dust blowing onto it. At the time the theory was formulated, it was difficult to test because it had never been found to form that way anywhere else, including Earth. 在火星上发现的黄钾铁矾导致科学家提出了一些理论来解释其起源。一些人认为,咸水蒸发后可能会留下来。其他人则认为,火星可能在数年前被巨大的冰盖巨石覆盖。他们进一步认为,黄钾铁矾可能在冰袋中形成。他们指出,如果冰盖缓慢地生长并且上面吹着灰尘,那将是可能的。在提出该理论时,很难进行测试,因为从未发现它能以其他方式形成,包括地球。 Now that jarosite has been found deep in Antarctic ice, the latter theory will likely become the most prominent. The researchers note that the theory still has one glitch—the ice in Antarctica contains very small amounts of jarosite—on Mars, the mineral is found in large slabs. The researchers suggest that the difference might be explained by the huge amounts of dust on the Martian surface.现在已经在南极冰层深处发现了黄钾铁矾,后一种理论可能会成为最突出的理论。研究人员指出,该理论仍然存在一个小问题-南极洲的冰中含有很少量的黄钾铁矾-在火星上,这种矿物存在于大平板中。研究人员认为,这种差异可能是由火星表面上大量的尘埃所解释的。点击:查看更多太空探索文章 查看更多生物学文章 使用PDF文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-01 19:20:46
极有希望在下一代能源材料中形成的极化子
SLAC国家加速器实验室的 Glennda Chui 上图显示了极化子-消除了材料原子晶格中的扭曲-在有前途的下一代能源材料铅杂钙钛矿中。SLAC和斯坦福大学的科学家首次观察到这些畸变的“气泡”是如何在电荷载子周围形成的,这些载流子是由光脉冲释放的电子和空穴,在此处显示为亮点。这个过程可能有助于解释为什么电子在这些材料中如此高效地传播,从而导致高太阳能电池性能。图片来源:Greg Stewart / SLAC国家加速器实验室 极化子在材料的原子晶格中短暂地扭曲,这些畸变在移动的电子周围以几万亿分之一秒的速度形成,然后迅速消失。它们虽然短暂,但它们会影响材料的行为,甚至可能是用铅钙钛矿制成的太阳能电池在实验室中获得极高效率的原因。现在,能源部的SLAC国家加速器实验室和斯坦福大学的科学家首次使用该实验室的X射线激光观察和直接测量极化子的形成。他们今天在《自然材料》中报告了他们的发现。斯坦福大学材料与能源科学研究所(SIMES)的研究人员亚伦·林登伯格(Aaron Lindenberg)表示:“由于这些材料的高效率和低成本,它们已经席卷了太阳能研究领域,但人们仍在争论它们
2021-01-05 18:05:00
肥胖相关炎症中的单不饱和脂肪酸(结论)
肥胖相关炎症中的单不饱和脂肪酸(上)6.3. 细胞模型-外源MUFA的作用油酸可保护HepG2细胞(人类肝癌细胞系)免受SFA诱导的脂毒性,降低ER压力,ROS生成以及激活炎症标志物(NLRP3,IL-6,MCP-1和IL-1β)[149] ]。在原代鼠肝细胞中,源自LD的细胞内MUFA与SIRT1(NAD依赖性蛋白脱酰基酶sirtuin /1 /沉默信息调节剂1)结合,从而通过PGC-1α激活PPARα。油酸也是直接的PPARα激动剂[150]。这些机制抑制了NF-κB的活性(图3)[151,152],至少部分解释了MUFA对肝脏炎症的吸收。在3T3-L1鼠前脂肪细胞系中,油酸处理可能通过PPARγ激活[154,155]增加脂联素基因的表达[153]。脂联素诱导IL-10分泌,抑制IL-6和TNF-α分泌[153],具有减轻体内局部炎症的潜力。脂联素还可以通过增强M2巨噬细胞极化来减少外周炎症(图3)[154-161]。用HFD喂养的小鼠制备的骨髓来源的巨噬细胞具有炎前特性,包括巨噬细胞M1极化和IL-6和TNF-α分泌增加(图3)[162]。用棕榈油酸酯处理这些巨噬细胞可以将巨噬细胞的极化转变为M2(图3)[162]。棕榈酸酯还激活AMPK,导致NF-κB核易位减少(图3)。这会增加一些抗炎因子的表达,例如MGL2,IL-10,TGFβ1和MRC1 [162,163]。小鼠脂肪基质血管部分和含油酸酯的骨髓原代培养物的孵育可抑制LPS诱导的IL-1β分泌[45,164]。在这种情况下,AMPK被激活,进而抑制了NLRP3的激活(负责IL-1β的成熟)(图3)[45,164]。关于原代大鼠胰岛细胞的报道也类似[165]。MUFA在其他几种细胞系中也显示出保护作用。例如,油酸盐可保护小鼠肌肉C2C12细胞免受棕榈酸酯诱导的胰岛素抵抗和内质网应激[166]。在源自肾上皮的小鼠足细胞中,SFA激活与内质网应激相关的细胞死亡途径。油酸盐可逆转这种作用[167]。在与棕榈酸酯相比,棕榈酸酯可降低人类内皮EAHy926细胞系的促炎性IL-6,IL-8和MCP-1分泌,并下调NF-κB(通过PPARγ刺激)[168]。 图3.单不饱和脂肪酸具有抗炎作用。 SFA(饱和脂肪酸)激活TLR4(Toll样受体4)以诱导NF-κB(核因子-κB)核易位表3.(NOD样受体家族,含3个吡啶原)和pro-IL-1β (前白介素1β)表达,导致IL-1β分泌和巨噬细胞M1极化。MUFA(单不饱和脂肪酸)可以通过直接结合GPR120(G蛋白偶联受体120)或PPAR(过氧化物酶体增殖物激活受体)以及AMPK(AMP活化蛋白激酶)磷酸化来分别抑制NF-κB和NLRP3活化。 通过抑制巨噬细胞M1极化,MUFA增强了M2极化。该数字是通过Servier Medical ART生成的。 4. 硬脂酰辅酶A去饱和酶-1在炎症中的作用7.1.人体相关性研究鉴于SCD1是参与MUFA合成的主要酶,一些作者假设SCD1的表达和/或活性增加可能与患者炎症状况的改善有关。在一项针对年轻人的研究中[169],在SCD1基因上游的rs2060792(A / G)单核苷酸多态性(SNP)与循环中的SFA棕榈酸酯和硬脂酸酯水平之间存在明显的相关性。带有主要等位基因的欧洲女性棕榈酸酯含量较高,而硬脂酸酯含量较低。有趣的是,这种SNP与肥胖症和较高的循环促炎因子CRP水平呈正相关,特别是在女性中。在一项分析来自肥胖个体的人内脏脂肪组织的手术样品的研究中,SCD1和IL-6启动子中组蛋白甲基化(H3K4me3)的富集与BMI升高有关。这种组蛋白甲基化富集模式与较低的SCD1表达和较高的促炎性TNF-α和IL-6表达相关[170]。然而,在超重的成年人中,高棕榈酸酯水平的血浆浓度反映了SCD1的高活性,与发炎性脂肪肝疾病的发生有关[171]。 SCD1活性增加可能是由于高循环浓度的底物棕榈酸酯触发的补偿机制所致[20,172]。在这些人体研究中获得的结果并不总是表明SCD1活性与炎症之间存在严格的相关性。这表明内源性合成水平不是MUFA调节炎症状态的唯一因素。 7.2.动物遗传模型人类和动物饮食研究都明确指出MUFA对炎症状态具有有益作用。鉴于MUFA是SCD1活性的产物,这种酶的缺失会降低MUFA的利用率(并增加SFA的积累),从而导致炎症增加。缺乏SCD1的小鼠是研究内源性MUFA合成对脂质代谢和炎症过程影响的有用工具。由于自然发生的基因组缺失,所以asebia小鼠模型缺乏SCD1。如在SCD1基因敲除小鼠中一样,无足彩动物表现出眼睛发炎,皮脂腺缺乏和真皮层瘢痕内没有毛发[173,174]。在皮肤特异性SCD1基因敲除小鼠中,毛囊周围促炎基因IL-6,TNF-α和IL-1β的表达增加[175,176]。通过引起卵泡细胞死亡,这种炎症导致脱发[177]。像SCD1基因敲除小鼠一样,阿斯比亚小鼠也免受HFD诱导的肥胖,肝脂肪变性和葡萄糖耐量异常的影响[178-180]。然而,与野生型小鼠相比,它们表现出复杂的炎症特征,包括循环炎症前标志物,例如IL-6和IL-1β[181]。脂肪组织特异性SCD1基因敲除小鼠可以预防西方饮食引起的肥胖和脂肪肝[74]。与野生型小鼠的WAT相比,它们的WAT表现出更低的MCP-1和TNF-α浓度,即使它们在HFD(60%大卡脂肪,主要是猪油)上饲养时也是如此。肠上皮细胞特异性SCD1敲除小鼠的结肠和回肠内促炎性标记IL-6和TLR4升高[182]。有趣的是,富含油酸盐的饮食可以挽救这些特定于肠细胞的效应[183]。有趣的是,肠上皮细胞特异性SCD1敲除小鼠在空肠中TLR4受体的表达减少,这表明它具有抗发炎的作用[182]。肝脏特异性SCD1基因敲除小鼠的肝脏中促炎性标志物IL-1β和TNF-α升高[184]。这些基因敲除小鼠模型的脂肪生成标记ACC,FAS和SREBP-1c的表达降低。棕榈酸酯合成减少的潜力可能会减弱SCD1耗竭的炎症作用。 7.3.蜂窝模型一些研究解决了SCD1在炎症细胞模型中的特定作用。鼠前脂肪细胞3T3-L1细胞系中SCD1基因的沉默或失活加剧了SFA的作用,增加了促炎标记物TGF-β,IL-6和MCP-1的表达,并降低了抗SFA炎性IL-10 [185,186]。在EndoC-βH1人胰腺β细胞系中观察到相似的结果。沉默SCD1可加重棕榈酸酯对炎性标志物表达的脂毒性作用,有趣的是,油酸酯和棕榈油酸酯治疗可挽救这些效应[187]。孵化RAW从全SCD1基因敲除小鼠分离的原代脂肪细胞中获得的具有条件培养基的264.7巨噬细胞会降低TNF-α和IL-1β炎性细胞因子的表达[188]。小鼠原代巨噬细胞中的SCD1沉默使TLR4受体高度敏感,从而加剧了炎性细胞因子(IL-1β,MCP-1和IL-6)的基因表达[189]。 TLR4超敏性被认为是由于膜磷脂中SFA比例增加[189]。其他技术方法可以洞悉SCD1过表达的作用。在人类原代肌管细胞中,SCD1的过度表达阻止了棕榈酸酯诱导的内质网应激和IL-8基因表达[190]。间充质基质细胞(MSC)可以从患者的后骨髓中制备[191]。用T0901317(LXR激动剂)处理这些MSC细胞后,SCD1和LXRα表达增加。这种治疗减少了棕榈酸酯诱导的Caspase 3/7激活以及促炎性IL-6和IL-8的表达。当将MSC细胞与特定的SCD1抑制剂CAY10566一起孵育时,LXR激动剂的作用被消除。这表明,至少在这些患者的骨髓基质细胞中,SCD1参与了棕榈酸酯诱导的炎症和细胞凋亡的预防[191]。 最近,使用从G蛋白偶联受体120(GPR120)缺陷小鼠中分离的原代肝细胞进行了一项研究。该受体与MUFA,特别是棕榈油酸酯相互作用[192]。棕榈酸酯对GPR120的激活涉及通过降低NF-κB活性来解决棕榈酸酯诱导的炎症。有趣的是,在这些细胞中,观察到了SCD1表达与GPR120活性之间的相关性[193]。抑制细胞中的SCD1会导致炎症增加。这可能是由于较低的细胞内MUFA浓度和较高的细胞内SFA浓度共同造成的。 5. 结论如本文全文所述,饮食中的脂肪摄入对炎症具有不可否认的影响。有证据表明,通过生活方式干预可以预防慢性低度炎症。富含SFA的西方饮食可诱发慢性炎症,并增加发生与肥胖相关的代谢紊乱的风险,例如心血管疾病,2型糖尿病和肝脂肪变性。相反,地中海饮食尤其是富含油酸盐的饮食有利于抗炎,并降低了代谢综合征的发展风险。确实,人类和动物饮食研究都表明,用MUFA替代SFA可以激活有益的抗炎机制(M2巨噬细胞极化,脂肪细胞IL-10分泌,抑制NLRP3炎性体)并逆转SFA对脂肪组织的有害作用。 ,肝组织和β细胞。这里介绍的许多机制可以解释饮食中油酸盐和高水平循环MUFA的保护作用。因此,在饮食中添加MUFA可能是减少慢性炎症并随后改善总体代谢状况的潜在营养保健途径。根据膳食MUFA的有益作用,一些研究表明,抑制SCD1会加剧SFA的有害作用。这可能是由于SFA水平(SCD1底物)的增加。因此,SCD1是降低细胞内SFA浓度有利于MUFA的有趣治疗靶标。但是,其他研究表明抑制SCD1可能会产生有利的结果。 SCD1缺失可保护小鼠免受富含SFA的HFD的有害作用,甚至改善人和动物的代谢状况。在这种情况下,SCD1缺失的保护作用不能归因于生物体中的MUFA活性。实际上,我们和其他人已经表明,SCD1缺失会抑制脂肪形成[74,76,77,79,182]。这可以归因于抑制SREBP-1c的醇化,降低其转录活性[77]。SCD1活性的这一方面值得进一步研究,以更好地了解其在炎症中的特定作用。 作者贡献:G.R.然后A.L.撰写了手稿。肯德基和C.M.编辑了手稿。所有作者均已阅读并同意该手稿的发行版本。资金来源:G.R。由国家历史研究基金会(NSREC)资助,由艾登(Lueur d'espoir pour Ayden)和A.L.基金会资助。 缩略语ACC 乙酰辅酶A羧化酶AGPAT 酰基甘油3-磷酸-O-酰基转移酶AMPK AMP激活的蛋白激酶apoA-I 载脂蛋白A-1apoB-100 载脂蛋白B-100ATP 三磷酸腺苷BMI 身体质量指数ChREBP 碳水化合物反应元素结合蛋白CPT-1 肉碱棕榈酰转铁酶1CRP C反应蛋白DGAT 甘油二酯酰基转移酶DNA 脱氧核糖核酸ELOVL E超长链脂肪酸的延伸ER 内质网FABP 脂肪酸结合蛋白FAS 脂肪酸合成酶FAT/CD36 脂肪酸转位酶/分化簇36FATP 脂肪酸转运蛋白FFA 游离脂肪酸GPAT 甘油3-磷酸酰基转移酶GPR120 G蛋白偶联受体120HCD 高碳水化合物饮食HDL 高密度脂蛋白HFD 高脂饮食hMSC 人间质间质细胞HOMA-IR 胰岛素抵抗的稳态模型评估IFN-γ 干扰素IKK‐IkB 核因子κB的IκB激酶抑制剂IL-1β 白介素-1βIL-10 白介素-10IL-18 白介素-18IL-1R 白介素-1受体IL-4R 白介素-4受体IL-6 白介素-6IL-8 白介素-8LD 脂质滴LDL 低密度脂蛋白LPS 脂多糖LXR 肝X受体MCP-1 单核细胞化学吸引蛋白-1MGL2 巨噬细胞半乳糖N乙酰半乳糖胺特异性凝集素2MRC1 巨噬细胞甘露糖受体1前体mTORC1 雷帕霉素复合物的哺乳动物靶标1MUFA 单不饱和脂肪酸NF‐kB 核因子κBNLRP3 类似于NOD的受体家族,pyrin结构域PGC-1β 过氧化物酶体增殖物激活的受体1βPI3K 磷酸肌醇-3-激酶PKB 蛋白激酶BPPARa 过氧化物酶体增殖物激活的受体αPPARδ 过氧化物酶体增殖物激活的受体δPPARγ 过氧化物酶体增殖物激活的受体γPUFA 多不饱和脂肪酸ROS 活性氧种类SAT 皮下脂肪组织SCD 硬脂酰辅酶A去饱和酶SFA 饱和脂肪酸SNP 单核苷酸多态性SRB1 清道夫受体B类1型SREBP-1 甾醇调节蛋白结合蛋白-1TG 甘油三酸酯TGF-β 转化增长因子TLR Toll样环境受体TNF-α 肿瘤坏死因子-αTNFR 肿瘤坏死因子受体VAT 内脏脂肪组织VADL 超低密度脂蛋白WAT 白色脂肪组织 参考文献(只处展示部分文献)1. B.H.古德帕斯特;克里希纳斯瓦米,S。哈里斯(TB);Katsiaras,A .;Kritchevsky,S.B .;西蒙西克(E.M.);内维特Holvoet,P .;新人A.B.肥胖,区域性脂肪分布和老年男性和女性的代谢综合征。拱。实习生。中2005,165,777-783,doi:10.1001 / archinte.165.7.777。2. Sherling,D.H .; Perumareddi,P .;亨内肯斯(C.H.)代谢综合征。 J.心血管药2017,22,365–367,doi:10.1177 / 1074248416686187。3. Saklayen,M.G.代谢综合征的全球流行。 Curr。高血压。Rep.2018,20,12,doi:10.1007 / s11906‐018‐0812‐z。4. Lee,B.C .; Lee,J。肥胖诱导的胰岛素抵抗发展中脂肪组织炎症中的细胞和分子参与者。 Biochim。等等。 2014年1月,1842,446–462,doi:10.1016 / j.bbadis.2013.05.017。5. G,Grandl;Wolfrum,C.止血,内皮细胞应激,炎症和代谢综合征。 Semin。免疫病理2018年40、215–224,doi:10.1007 / s00281‐017‐0666‐5。6. Arroyo-Johnson,C .;明西(K.D.)全球肥胖流行病学。胃肠酸。临床北。上午。 2016,45,571–579,doi:10.1016 / j.gtc.2016.07.012。7. 美国安东诺普洛斯; Tousoulis,D。肥胖悖论的分子机制。心血管Res。 2017,113,1074-1086,doi:10.1093 / cvr /cvx106。8. Tchernof,A .; Despres,J.P.人类内脏肥胖症的病理生理学:最新动态。生理学。 Rev. 2013,93,359–404,doi:10.1152/ physrev.00033.2011。9. Despres,J.P .; Lemieux,I。腹部肥胖和代谢综合征。 Nature 2006,444,881–887,doi:10.1038 /nature05488。 10. Engin,AB什么是脂质毒性?进阶经验中生物学2017,960,197–220,doi:10.1007 /978‐3‐319‐48382‐5_8。11. A.吕肯(J.J. Y.Arumugam;格拉茨(J.F.);新罕布什尔州丹顿脂肪酸摄入的急性调节涉及脂肪酸转位酶的细胞再分布。 J.Biol。化学2000,275,14501–14508,doi:10.1074 / jbc.275.19.14501。12. B.Ason;卡斯特罗·佩雷斯(J. Tep,S.;Stefanni,A .; Tadin-Strapps,M.;罗迪,T。汉克迈尔,T。哈伯德,B .;萨克斯(A.B.)迈克尔·弗拉纳根(W.等。 ApoB siRNA诱导的肝脂肪变性对脂肪酸转运蛋白5(Fatp5)的丢失具有抗清除作用。脂质2011,46,991–1003,doi:10.1007 / s11745‐011‐3596‐3。13.温格,R.H。脂毒性疾病。安努礁。用。 2002,53,319–336,doi:10.1146 /annurev.med.53.082901.104057。14. Summers,S.A.神经酰胺的胰岛素抵抗和脂毒性。编脂质水库。 2006,45,42–72,doi:10.1016 /j.plipres.2005.11.002。15. 范·赫尔彭(NA)Schrauwen-Hinderling,V.B.脂质在非脂肪组织中的积累和脂毒性。生理学。行为。2008年94,231–241,doi:10.1016 / j.physbeh.2007.11.049。16. A.R. Saltiel; Olefsky,J.M.将肥胖与代谢疾病联系起来的炎症机制。 J.临床。调查。 2017,127,1-4,doi:10.1172 / JCI92035。17. Xydakis,上午案例C.C.琼斯(P.H.)霍格芬,R.C .;刘明Y;史密斯(E.O.);纳尔逊(K.W.);巴兰坦(C.M.)肥胖者的脂联素,炎症和代谢综合征的表达:通过热量限制快速减肥的影响。 J.临床。内分泌醇。代谢2004,89,2697–2703,doi:10.1210 / jc.2003-031826。18. Karczewski,J。 Sledzinska,E .;巴图罗,A .; Jonczyk,我。 Maleszko,A .; Samborski,P .; Begier-Krasinska,B。 Dobrowolska,A.肥胖与炎症。欧元。细胞因子网络。 2018,29,83–94,doi:10.1684 / ecn.2018.0415。19. 魏斯河; Dziura,J .;T.S. Burgert; W.V. Tamborlane;塔克萨里(S.E.); Yeckel,C.W .;艾伦(K.)罗珀斯萨瓦省莫里森,J。等。儿童和青少年的肥胖症和代谢综合征。N. Engl。 J. Med。 2004,350,2362–2374,doi:10.1056 / NEJMoa031049。20. Nieuwdorp,M。E.S. Stroes;迈耶斯(J.C.) Buller,H.代谢综合征中的高凝性。 Curr。 in药2005,5,155–159,doi:10.1016 /j.coph.2004.10.003。21. 丹多纳(P.) A.Aljada; Bandyopadhyay,A。炎症:胰岛素抵抗,肥胖与糖尿病之间的联系。趋势免疫。 2004,25,4–7,doi:10.1016 / j.it.2003.10.013。22. 丹多纳(P.) A.Aljada;乔杜里(A. Mohanty,P .; Garg,R.代谢综合症:基于肥胖,糖尿病和炎症之间相互作用的综合观点。发行2005,111,1448–1454,doi:10.1161 / 01.CIR.0000158483.13093.9D。23. 唐Y冯恩;徐阿兰慧英C反应蛋白和衰老。临床经验Pharmacol。生理学。 2017,44,9–14,doi:10.1111/ 1440-1681.12758。24. 加贝角库什纳,I。急性期蛋白和其他系统性炎症反应。 N. Engl。 J.Med。 1999,340,448–454,doi:10.1056 / NEJM199902113400607。25. 塞罕(C.N.)炎症的消退阶段:新型内源性抗炎和可解决脂质介体和途径。安努免疫牧师2007,25,101–137,doi:10.1146 / annurev.immunol.25.022106.141647。26. Rodier,F .; Campisi,J。细胞衰老的四个面孔。 J.细胞生物学。 2011,192,547–556,doi:10.1083 / jcb.201009094。27. Cevenini,E .;蒙蒂,D。 Franceschi,C.炎症老化。 Curr。 in临床营养食品代谢护理2013,16,14-20,doi:10.1097 / MCO.0b013e32835ada13。28. Weissmann,G。它很复杂:从Metchnikoff到Meryl Streep的发炎。 Faseb J.2010,24,4129-4132,doi:10.1096/ fj.10-1101ufm。29. 小默多克;劳埃德(Lloyd)慢性炎症和哮喘。笨蛋Res。2010,690,24–39,doi:10.1016 /j.mrfmmm.2009.09.005。30. 钱伯斯(J.C.) Eda,S .;巴塞特(P.)卡里姆(Y.汤普森(S.G.) J.R. Gallimore;佩皮斯(M.B.) Kooner,J.S。与欧洲白人相比,英国的印度裔亚洲人的C反应蛋白,胰岛素抵抗,中枢性肥胖和冠心病风险。发行2001,104,145–150,doi:10.1161 / 01.cir.104.2.145。31. 纽约州Donath;肖尔森(美国) 2型糖尿病是一种炎症性疾病。纳特免疫牧师2011,11,98-107,doi:10.1038 / nri2925。32. Hotamisligil,G.S.炎症和代谢异常。 Nature 2006,444,860–867,doi:10.1038 /nature05485。33. Murray,P.J。巨噬细胞极化。安努生理学家。 2017,79,541–566,doi:10.1146 /annurev‐physiol‐022516‐034339。34. Chinetti-Gbaguidi,G .; Staels,B。代谢紊乱中的巨噬细胞极化:功能和调节。Curr。 in脂质体。2011,22,365–372,doi:10.1097 / MOL.0b013e32834a77b4。35. 黄胜Rutkowsky,J.M .;斯诺德格拉斯(R.G.)小野摩尔,K.D .;施耐德(D.A.);纽曼(J.W.);亚当斯(美国) Hwang,D.H.饱和脂肪酸可激活TLR介导的促炎信号通路。 J.脂质研究。 2012,53,2002–2013,doi:10.1194 / jlr.D029546。36. Sun,S.C.免疫和炎症中的非规范性NF-κB途径。纳特免疫牧师2017,17,545–558,doi:10.1038 / nri.2017.52。37. 基尔万,上午;莱尼根(Yen。俄勒冈州奥赖利; F.C. McGillicuddy;罗氏(Roche)代谢炎症的营养调节。阅读更多文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2020-12-31 16:01:29
大火前后的巴黎圣母院大教堂的声学调查
布莱恩·F·G。卡茨*和安东尼·韦伯法国巴黎CNRS Sorbonne大学Jean Le Rond d´Alembert研究所UMR7190,法国; antoine.weber@dalembert.upmc.fr*通讯:brian.katz@sorbonne-universite.fr 收到:2020年9月27日;接受:2020年10月29日;发布时间:2020年11月6日摘要:巴黎圣母院大教堂是世界上最著名的礼拜场所之一。它的体积大,加上相对裸露的石头结构和大理石地板,导致相当长的混响时间。大教堂在2019年遭受大火,主要损坏了屋顶和拱形天花板。尽管此空间臭名昭著,但有关该空间的声学参数的已发布数据很少,这些数据并不一致。恢复了1987年的存档测量记录,发现其中包括几次气球爆炸。 2015年,针对虚拟现实项目进行了测量会议。这两个阶段的结果之间的比较显示,在开火前,混响时间略有减少(8%)。火灾发生1年后,最近在施工现场进行了测量。与2015年的数据相比,混响时间显着减少(20%)。本文介绍了这些测量的初步结果,并提供了有关这具历史悠久的朝拜空间在2019年大火之前和之后的声学记录。 关键词:室内声学测量巴黎圣母院;混响时间文化遗产1. 介绍礼拜场所的声学已成为数十年来研究的主题。由于其巨大的规模,这些空间已在多个世纪以来用于文化和宗教活动。这样的空间经常表现出声音异常(例如,耳语的画廊和耦合的体积)。吉隆(Girón)等人综述了这项研究的重要部分。 [1],讨论了不同的实验程序,结果及其理论解释。在具有重要历史意义的空间中进行了许多著名的研究:圣彼得大教堂[2],圣索非亚大教堂(Haghia Sofia)和苏莱曼清真寺(SüleymaniyeMosque)[3],圣约翰洗礼池[4],圣日耳曼德佩雷斯修道院[5]和圣保罗大教堂[6]。巴黎圣母院大教堂(CathédraleNotre-Dame de Paris)是世界上最著名的礼拜场所之一。这座中世纪大教堂被广泛认为是法国哥特式建筑的最好典范之一。大音量加上其巨大的裸露石灰石和大理石表面,导致长的混响时间。尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。巴黎哥特式大教堂建于12世纪末,成为欧洲音乐创作的象征地,历史学家称其为“巴黎圣母院”。文件证明了这一时期的音乐活动,并且可以认为这种巴黎复音的惊人发展与1182年新合唱团举行的礼拜式组织相吻合。巴黎圣母院大教堂的法令颁布于1198年和1199年,主教Eudes de Sully证明了大众,办公室和贝纳迪卡莫斯·维斯珀多米诺骨牌的两种,三种和四种声音的实践[7,8]。 我们很幸运有一位英国校长撰写的历史性文字[9],描述了这座大教堂合唱团1275年左右的音乐习惯,在此之前,器官和半即兴的传导性的声音可能会朝后殿升起在各种手稿中都有记载,这些手稿证明了Magnus liber organi的丰富性[10](巴黎圣母院在12世纪和13世纪之交时使用的拉丁语“器官大典”)。几个世纪以来,这种方法不断发展,随着格里高利旋律的出现,这些旋律逃离了封闭的合唱团,或者随着游行队伍而流通,风琴,铃铛的声音和法佛对位的复调作品混合在一起。 “ 1498年任命安托万·布鲁梅尔(Antoine Brumel)带来了新鲜的空气:费拉拉公爵未来的合唱团指挥官带来了佛朗哥-佛兰德和弦的最好和最新的复音” [11]。音乐史将铭记安德烈·坎普拉(AndréCampra),让·弗朗索瓦·拉洛埃特(Jean-FrançoisLalouette)或让·弗朗索瓦·莱苏厄尔(Jean-FrançoisLesueur)等伟大的大师和作曲家的名字,他们在革命时期后组成了著名的加冕典礼,供拿破仑进入大教堂1804年,以及加冕大礼的各种作品。2019年4月15日,巴黎圣母院大教堂的阁楼发生火灾。由此产生的损坏摧毁了屋顶,并在尖顶和其他碎屑掉落时在拱形天花板上留下了三个大孔。随着修复工作的继续,在大教堂的结构和材料方面进行了大量的记录工作,这项工作介绍了近期的工作,以记录大教堂的室内声学状况,对火灾前和火灾期间采集的数据进行了分析。重建过程。这项工作的某些要素先前已经在科学会议上提出过[12]。2. 已发布的声学数据尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。 Hamayon [13]提出了混响时间估计作为八度频段的函数[125至4000 Hz:8.5、8.0、7.5、6.0、4.5、2.7 s]。 Mercier [14]提出的建议略有不同混响时间值[125至4000 Hz:8.5、8.2、6.5、6.2、4.7、2.5 s]。两项研究都仅介绍了混响时间,而没有任何参考或测量协议信息。3. 材料和方法:20世纪和21世纪的测量 3.1. 1987年的历史数据档案记录(1987年)是从有关一个新器官的声学研究中恢复的[15],其中包括几个气球破裂。测量协议—图1a显示了1987年带源-接收器(SR)位置的测量的测量计划。尽管采用了使用不同刺激的多种技术,但由于缺少刺激细节(例如,消声信号,扫描刺激参数),仅可利用气球爆裂源。从源位置1记录了三个气球爆炸,从源位置2记录了1个气球爆炸。这些位置对应于大教堂的“相对”源位置[16],其中S2在变位子和祭坛区域的中心附近。 S1在讲坛附近,更靠近公共区域的中心。测量设备的输入-用13个全向麦克风记录声音,这些麦克风连接到多轨线对线录音机(Tascam)。虽然不是理想的全向声源,但气球爆裂在某些情况下还是有用的工具,它提供了便携式脉冲源[17]。记录从模拟磁带上数字化。图1.巴黎圣母院大教堂(a)1987,(b)2015和(c)2020届会议的测量计划。位置居中于编号源(S#(红色))和麦克风(#(蓝色和绿色))标签下,或在所测量的网格过于密集的点处。 2020年计划(c)还在阴影区域指示了无法放置测量设备的脚手架(黄色),人为禁止区域(红色)和禁止区域的受阻碍/损坏的地面(蓝色)。3.2. 2015年的详细测量在2019年大火发生前的将近4年的2015年4月13日晚上,在一次小型音乐会演出之后进行了一系列声学测量。测量协议-图1b显示了测量计划,突出显示了2015年测量的S-R位置(请参见图2a中的照片)。源位置反映了1987年的测量结果,以及代表合唱团的S3和1987年测试的S4,尽管在进行测量后没有发现气球爆裂。在2个正弦扫描的三个测量组中,执行了麦克风1–8更改位置的操作(高度为1.5 m,这些麦克风的更改位置由测量位置后面的字母表示)。由于外部噪声过大,首次测量重复进行了两次,共87次,形成了4组测量值。麦克风9-16悬吊在天花板上(88层上方7 m,以捕获混响场供唱片工程师用于音乐会录音),因此89保持在同一位置,因此记录了八个类似的RIR。这些重复的90次测量允许研究随时间变化的声学响应的稳定性,其中91次解决了温度变化的细微影响[18]。在最后一次扫描测量之后,在每个源位置记录一个气球爆炸,而接收器在最终位置。(a)(b)图2.(a)2015年的状况照片,突出显示了测量期间测量设备,地毯滑道和小型音乐会立管; (b)2020年,突出显示在测量过程中由遥控机器人,障碍物和中殿的总体空状态拉动的麦克风三脚架。测量设备的输出-音频输出被发送到放大器(SAMSOM,美国Servs120a型,希克斯维尔),并依次发送到四个微型十二面体声源(三博士,3D-032型,日本东京)。信号-激励信号基于扫频正弦法。扫描频率从20到20,000 Hz,在20 s内呈指数增长。但是,由于这些特定扬声器的频率响应,在250 Hz八度频段以下的能量不足,无法进行分析。使用DAW软件Reaper和声卡(RME,Fireface 800,德国海姆豪森,德国)以44.1 kHz的采样率播放扫描。测量设备的输入-混响信号是由两个测量链记录的,因为测量的会话是与音乐会录音设备一起进行的。(I)用5个全向麦克风(4个DPA(丹麦Alleroed),4006型(1-4)和1个Schoeps(德国卡尔斯鲁厄)MK5型全向麦克风(5)以44.1 kHz的采样率记录扫描。 ,1个虚拟头(KU-80,配备DPA 4060)和1阶Ambisonic麦克风(Core Audio,Tetramic,Teaneeck,NJ,美国),所有这些都使用声卡(RME,Fireface 800)录制。 )使用其他11个全向麦克风(6个DPA 4006型(11–16),5个Schoeps MK5型全向麦克风(6–10))和声卡(RME)以48kHz的采样率记录扫描,Micstacy)。3.3. 2020年重建后大火的测量准许进入重建现场,并于2020年6月30日进行了声学测量。由于工作现场的限制,只能进入某些区域。由于存在掉落碎片的风险,中殿和中庭已禁止人员进入,如图1c所示。链节/坛大理石地板的中央部分被尖顶掉落损坏。合唱团区域杂乱无章,由救援队整理,因此完全无法进入。许多侧面祭坛已被用来存储物体。还安装了用于移除器官的脚手架和围绕中殿的保护屏障(建筑围栏和腰高的穿孔金属板)。见图2b中的照片;在线(https://youtu.be/YLi7ASosKvw)上有一段简短的视频记录了测量会话。测量协议-图1c显示了测量计划,突出显示了2020年测量的S-R位置。在给定访问限制的情况下,选择扬声器的源位置S1,使其尽可能接近先前测量中使用的位置。源位置S2用于手持式脉冲源,因为这是最接近S1的位置。遥控机器人(用于隧道检查)被用来拉动安装在三脚架上的麦克风。麦克风位置1-5代表第一测量轨迹。由于剩余的时间,机器人的返回轨迹(位置6-19)允许更密集的分布。从位置S1开始进行抽奖。测量设备的输出-声源是电池供电的十二面体声源(Look Line,S103 ACDC,意大利Massa Finalese),配备有自己的内部放大器和扫频发生器,远程控制,位于声源位置S1。激励信号是内部20 s扫描正弦波。在禁区的极限处,从源位置S2进行了几次补充冲动刺激,手枪开枪射击和气球爆裂。测量设备的输入-混响的信号记录在各种便携式记录设备上,以限制由于机器人操作而引起的布线和混乱。除了使用一对MS(Zoom,H6)外,还使用两个与便携式录音机(Zoom,H6,东京,日本)连接的全向麦克风(Bedrock,BAMT1 1/2”,荷兰代尔夫特)进行录音。将两个3D麦克风(Core Audio,Tetramic和Octomic)记录到便携式录音机(Zoom,F8)上。最后,使用了两个自主3D麦克风(Zoom,H3-VR),一个与360°摄像头(三星,Gear360,韩国首尔)配合使用。源/接收器的高度为1.7 m,受限于用于放置设备的带轮三角架设备。3.4. 后期处理随后的反卷积扫描正弦刺激,采样率转换和后处理步骤在MATLAB中执行。根据我们的内部MATLAB IR分析(IRA)工具包,根据ISO 3382标准对RIR进行了分析[19]。3.5. 建筑细节巴黎圣母院长约130 m,宽48 m,高35 m。在与巴黎圣母院办公室的电话交谈中,确认在几个区域安装了地毯滑道,并且在与前两个海湾相邻的两个礼拜堂(侧面壁or或海湾)中增加了两个确认亭。在这段时间里因此,1987年和2015年之间的区别主要是安装了地毯滑轨(见图2a和3a)。从2015年到2020年,大火后的主要区别是拆除地毯滑道,拆除长椅和拱形天花板上的孔。图3b显示了修复团队在天花板上报告的主要孔洞。使用2D投影(忽略高程拓扑),建筑图纸中的孔大小估计为263 m2。根据上述尺寸,这相当于包围盒表面积的1%。(a)(b)图3.巴黎圣母院大教堂的示意图突出了特定的表面。 (a)突出显示座位位置(黄色)和增加的地毯流道(红色)的计算机模型; (b)指出拱形天花板(2020)中主要孔洞(红色)的建筑图。4. 测量结果 4.1. 声学参数由于三个测量会话期间信源/接收器位置的变化以及2020年测量条件的巨大差异,此处介绍的初步分析重点是混响时间测量,而不是对本地建筑特征更敏感的参数。在所有三种测量条件下,通过全向麦克风计算平均混响时间(T20),如图4a所示。图4.接收机平均混响时间汇总,衰减曲线示例和耦合体积分析,(a)具有标准误差棒的全向麦克风的平均混响时间(T20)。 2020年的结果显示了扫掠刺激(S1)和脉冲源枪击(S2,Rec位置1-5)的结果; (b)八度带滤波的RIC衰减,标准化,优化的SNR截断,2020扫描激励数据集的示例; (c)全斜率衰减500Hz-八度频带分析分布,显示RIC衰减曲线中所识别弯曲点的早期和晚期混响时间以及相对时间(BPt)和电平(BPdB)([20],以获得参数详细信息)。带刻度的箱线图显示了数据分布的中位数,95%置信区间,第25和第75个百分位数。 2020年测量协议采用了非同步音频输入/输出设备。虽然设备之间精确时钟速率的差异可能会导致解卷积信号的时间失真,但Hak和Hak [21]已表明,与MLS信号相比,这种误差对扫频刺激的影响较小。另外,在该研究中发现典型的时钟误差足够小,以致混响时间的预期偏差将小于百分之几。为了验证异步措施,还从源位置S2计算了2020年脉冲源枪射击的混响时间。结果表明,两种测量方法之间的差异在不同位置和频率的标准误差范围内有所不同,除了250Hz频段显示稍高的值(增加7%)和125 Hz频段缺乏足够的分析能量。从整个测量时段的混响时间来看,从1987年到2015年平均降低了8%。2015年和2020年之间的比较显示,整个频段的降低显着得多,T20的平均降低了20%。仔细检查RIR可以提供其他信息。图4b中显示了用于计算上述房间声学参数的RIC示例。衰减曲线显示出一个陡峭的阶跃或“悬崖”响应,正如在露天剧院中所观察到的[22]。考虑到除了光滑的空地板以外没有近端反射表面,这是合理的。在响应的较早和较晚部分之间,衰减率会出现一些细微变化,这表明体积行为呈轻微耦合。使用行进线多斜率分析方法对此进行了进一步分析[23,24]。为简便起见,此分析仅限于500 Hz倍频程滤波的RIR,并使用可比较的源和接收器位置与2020年缩小的测量区域将2020年的测量结果与2015年的子集进行比较。此方法除了可以描述时间和水平上的弯曲点外,还可以估算RIC的早期和晚期衰减率。相对于RIR发作。由于耦合体积衰减的行为随复杂体系结构中的源和接收器位置而变化[25],因此将比较每个参数的结果分布,比较2015年和2020年的RIR,比较下半部分的源和接收器位置中殿(两个数据集中的共同测量区域)。非线性衰减分析的结果(如图4c所示)反映了如图4a所示的混响时间的总体减少,同时也突出了存在非线性衰减时使用ISO参数的问题。结果显示,早期和晚期衰减率均下降,表明主要和次要“体积”均减小。在Notre-Dame的情况下,对不同声音音量的界定不如在耦合混响音乐厅设计中那样明显和明显。但是,由于其较高的天花板,可以将Transept与其他空间完全不同,而侧面区域(Transept除外)具有多个水平。由于拱形天花板中的孔位于收发器区域内(图3b),但是其中一个孔位于源/接收器区域上方,因此可以想象这种损坏会影响多个声学“体积”。在这些体积中衰减率的降低还导致弯曲点时间的减少,并在较小程度上降低了水平,并且应注意,所有这些参数都与声耦合条件有关。 2015年情况的后期混响时间的可变性可能归因于空间的复杂性以及各种声学区域,这不仅导致了简单的双斜率衰减,而且导致了更高阶的耦合。需要进行进一步的分析和测量以进一步检查该假设。最后,根据Luizard等人的观点,考虑可感知的可检测性。 [20],耦合条件下早期衰变率的平均正差(JND)约为7%至10%,是晚期衰变的两倍。同样,BPt的JND约为15%到30%,涵盖了此处观察到的差异。这样,可以确信地说声学条件的差异是清晰可听的。4.2. 空间分析空间房间脉冲响应(SRIR)可用于房间声学的比较方向分析。这里选择的方法是一种参数化方法,即空间分解方法(SDM)[26]。基于这样的假设,声场可以描述为一连串的平面波,因此SRIR可以分解为一组离散的压力值及其对应的到达方向(DOA),即图像源为归因于每个时间样本。为此,将一个以目标样本为中心的小时间窗口应用于SRIR,并通过最小二乘解估计到达时间差(TDOA)的DOA。理想情况下,使用阵列中心的全向脉冲响应来分配压力值。该方法已用于音乐厅SRIR的分析和声音化[27],也用于其图形表示[28]。这些工具在MATLAB软件包SDM Toolbox [29]中实现。SDM分析应用于使用相同3D四面体麦克风阵列进行的2015年和2020年测量。使用A格式信号(代表接近重合心形麦克风的四面体阵列)估算DOA。对于所使用的麦克风,将分析窗口设置为最小允许大小,该大小是脉冲通过阵列传播所需时间的两倍,对于所使用的麦克风而言,大约为0.4毫秒。为了获得麦克风中心的压力值,这是SRIR的图形表示所必需的,使用了后处理的B格式全向W通道信号,因为这种分配应应用于与方向无关的RIR。图5中显示了类似的源-接收器对位置的中值平面和侧面平面的结果。需要注意的是,在2020年,没有座位,地板空着。相比之下,2015年既有长椅,也有一些舞台上升器,椅子和乐谱架代表着音乐表演(见图2a)。在比较这些结果时,可以进行一些观察。(a)(b)图5. SDM分析显示了从0 ms到[10,50,100,200,300,500,1000] ms的累积能量极性分布曲线,带通滤波了100 Hz至5000 Hz,滑动平均值为5°。指示了源位置(红点)。 (a)SDM分析:状态2015,Src S2–Rec 1c; (b)SDM分析:状态2020,Src S1,建议16。从CNRS/MC为修复巴黎圣母院而采取的科学行动的数字平台上获得的纵向截面,来源:Andrew Tallon进行的3D激光扫描(2016)。关于直接声音,2015年显示的声音既局部又清晰(略微升高,这与它的位置以及当时的声源都升高相对应)。地板反射不可见,可能是由于椅子和长椅的存在。到2020年,直接声音“波瓣”变得更宽广,不那么尖锐。检查侧视图图,直接声音(实际上是响应的初始0 ms到10 ms窗口)呈现出略微负向的升高。这可能是由于平坦的地板空了,在10毫秒的分析窗口内对地板的强烈反射进行了计数,从而降低和扩大了响应的早期部分。关于累积能量,在2015年,能量从各个方向相当平稳且均匀地增加,如后续能量轮廓曲线之间的规则径向间距所示,最大增加幅度为100至200 ms,因此反射以35至70的路径差到达米后的直接声音,主要归因于拱形天花板。横向能量的首次增加是在直接声音到达后的10到50毫秒内发生的,这与中殿中的列行以及侧阳台的反射相吻合。在平面和截面上,包含0到1000 ms的最终分析窗口在-10 dB的相对水平下相当圆。相反,如先前的分析所述,2020年的结果显示,在初始时间窗口之后,能量的阶跃函数降低更多,这表明在整个时间(尤其是在垂直方向)上都缺乏随时间的渐进反射累积。在所有方向上平均的200到1000毫秒之间的相对累积水平为2dB,比2015年的结果低2dB。5. 讨论与未来工作由于[13,14]中的数据与2015年的测量结果相当,因此可以得出结论,导致更短混响时间估计的变化是在1987年至1996年之间进行的。由于巴黎圣母院大教堂的体积相当大,混响时间差必须是实质性变化的结果。还可以考虑大气条件影响混响时间结果的可能性。然而,由于温度和相对湿度主要影响1000 Hz以上的混响估计[30],因此可以将其排除为减少混响时间的原因。因此,地毯跑步者可能是候选人。自2019年毁灭性大火以来,混响时间的减少显而易见。使用扫频正弦波和脉冲源以及相对近端位置都观察到相同的差异。导致T20急剧降低20%的建筑元素仍有待验证。非线性衰减率或耦合声量分析突出了这样一个事实,即变化的规模很大,影响了大教堂的不同区域,为此,拱形天花板上的孔可能是至少起重要作用的候选对象。后续工作将需要确定火灾损害相对于临时安装位置和残留杂物的声学影响。根据2015年的测量结果创建并校准了巴黎圣母院的几何声学模型,并根据2013年4月24日的音乐会表演记录[31],制作了虚拟的音乐会重建模型[31],未来大教堂的声学研究工作可以使用此计算机模型,最近的测量结果和模拟来使模型适应建筑物的发展状态。正如最近的研究表明,数值模拟用于研究复杂和耦合的声学条件[24]以及感知生存力[32]的可靠性一样,这种几何声学分析工作在大教堂中可以认为是可靠的。最初的工作将集中在2020年的火后状态,以归因于各种变化的声学影响。这些结果将提供给重建团队,然后可以将该模型进一步用于评估项目期间建筑重建建议的声学影响。声学模型可用于研究重建过程中可能的演化,其自850年前建造以来,还可用于探索巴黎圣母院的声学演化。几个世纪以来,大教堂的许多元素发生了变化,从法国大革命期间发生的各种建筑翻新和破坏到用于不同活动的各种装饰,无论是宗教的政治,政治以及整个季节,巴黎大教堂圣母院的音响效果在整个历史上都不是一成不变的,而是其环境和人类占领的不断发展的无形产物。结合历史研究成果,声学模型和相关的虚拟模拟可用于探索和体验这些先前的状态[33]。作者贡献:概念化,B.F.G.K.和A.W .;方法学,B.F.G.K.和A.W .; B.F.G.K.软件;验证,B.F.G.K。和A.W .;形式分析,B.F.G.K。和A.W.; B.F.G.K.调查和A.W .;资源,B.F.G.K.;数据策划,B.F.G.K .;写作-原始草案准备,B.F.G.K。和A.W.;写作-审查和编辑,B.F.G.K。和A.W .;可视化,B.F.G.K.和A.W .;监督,B.F.G.K .; B.F.G.K.项目管理;资金获取,B.F.G.K.所有作者均已阅读并同意该手稿的发行版本。资金来源:这项工作的部分资金来自“尚蒂尔圣母大学”,而CNRS跨领域和跨学科研究计划(MITI)也投入了资金。欧盟JPI文化遗产项目PHE提供了额外的支持,以探索建筑声学和音景的文化遗产。这项工作的2015年阶段部分由法国ECHO项目(授权号ANR-13-CULT-0004),echo-projet.limsi.fr和BiLi(授权号FUI-AAP14,www.bili-project)资助.org)。致谢:特别感谢巴黎圣母院的工作人员在测量过程中的协助和耐心。我们还要感谢MichèleCastellengo提供了1987年音乐实验室的原始数据录音,该录音是应文化部长的要求而进行的。感谢2015年测量期间Bart Postma,Julie Meyer和Jean-Marc Lyzwa(CNSM)的协助。特别感谢Tapio Lokki对SDM分析的讨论,以及FrédéricBilliet对Notre-Dame音乐史的贡献。最后,我们要感谢Escadrone在租用2020年测量中移动设备所需的机器人方面的帮助和指导。 参考文献可在原文中查看点击:查看更多分类文章 免费试用文档翻译免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:MDPI
2020-12-25 18:30:44
DNA编辑方法显示有望治疗早衰小鼠模型
研究人员使用最近开发的DNA碱基编辑技术纠正加速的衰老症。研究人员已经成功地使用了DNA编辑技术,以延长与早衰相关的遗传变异的小鼠的寿命,早衰是一种罕见的遗传疾病,可导致儿童极端过早衰老,并可以显着缩短其预期寿命。这项研究发表在《自然》杂志上,该研究是美国国立卫生研究院下属的国家人类基因组研究所(NHGRI)的合作。波士顿广泛的哈佛大学和麻省理工学院;以及田纳西州纳什维尔的范德比尔特大学医学中心。 DNA由四个化学碱基-A,C,G和T组成。早衰症,也称为Hutchinson-Gilford早衰综合症,是由核纤层蛋白A(LMNA)基因的突变引起的 ,其中一个DNA碱基C改变为T。这种改变会增加有毒蛋白质progerin的产生,从而导致快速老化过程。 在出生的头两年内,大约有四百万儿童被诊断出患有早衰症,并且几乎所有这些儿童在儿童期和青春期都会出现健康问题,这些问题通常与老年有关,包括心血管疾病(心脏病和中风),头发减少,骨骼问题,皮下脂肪减少和皮肤变硬。在这项研究中,研究人员使用了一种突破性的DNA编辑技术,即 碱基编辑(链接是外部的),用一个DNA字母替换另一个DNA字母而不
2021-01-07 18:49:12
研究将代谢综合征与牛皮癣患者的更高心血管风险联系起来
牛皮癣是一种慢性炎症性皮肤病,长期以来一直会增加罹患心血管疾病的风险,其中包括心脏病发作和中风。现在,研究人员已经确定了一个关键元凶:代谢综合征(MetSyn)的存在,这种疾病包括肥胖,糖尿病,高胆固醇和高血压,在牛皮癣患者中非常普遍。该发现可能会导致在牛皮癣患者中预防心血管疾病的新方法,该发现今天发表在《美国皮肤病学杂志》(JAAD)上。这项研究是由美国国立卫生研究院的一部分,美国国家心脏,肺和血液研究所(NHLBI)资助的。“代谢综合征在我们的牛皮癣患者中很常见,它通过增加阻塞心脏动脉的斑块堆积来加剧这一人群的冠状动脉疾病,”预防心脏病学家,NHLBI实验室负责人,医学,医学和医学硕士Nehal N. Mehta说。炎症和心脏代谢疾病。“我们的研究表明,在MetSyn成分中,高血压和肥胖对冠状动脉斑块形成的影响最大,因此可以作为良好的干预目标。”牛皮癣是一种常见的皮肤病,会影响2-3%的成年人,部分原因是它加剧了血管和全身炎症,牛皮癣,不仅增加而且加速了动脉粥样硬化,这是堵塞动脉的斑块堆积,可导致心脏病和中风。代谢综合症影响约25%的成年人,并且呈上升趋势,在牛皮癣患者中
2021-01-07 18:46:52
肥胖相关炎症中的单不饱和脂肪酸(上)
肥胖相关炎症中的单不饱和脂肪酸(结论)Gaetan Ravaut,AlexandreLégiot和Karl-F伯杰龙和凯瑟琳·穆尼尔*CERMO-FC研究中心,蒙特利尔魁北克大学(UQAM)生物科学系脂质分子代谢实验室,加拿大QC H3C 3P8; ravaut.gaetan@courrier.uqam.ca(G.R.); legiot.alexandre@courrier.uqam.ca(A.L.); bergeron.karl-frederik@uqam.ca(K.F.B.)摘要:肥胖是代谢综合征的重要方面,通常与慢性炎症有关。在这种情况下,参与能量稳态的器官(例如肝脏,脂肪组织,肌肉和胰腺)的炎症会导致巨噬细胞的募集和激活,从而分泌促炎性细胞因子。白细胞介素-1β的分泌,持续的C反应蛋白血浆水平和NLRP3炎性小体的活化是这种炎症的特征。硬脂酰-CoA去饱和酶-1(SCD1)酶是脂质代谢和脂肪储存的主要调节剂。这种酶催化从饱和脂肪酸(SFA)底物生成单不饱和脂肪酸(MUFA)-脂质滴中储存的甘油三酸酯的主要成分。在这篇综述中,我们描述了特定类别的脂肪酸(饱和和未饱和)的分子效应,以更好地理解不同饮食(西方饮食与地中海饮食)对代谢环境中炎症的影响。考虑到富含MUFA的地中海饮食的有益作用,我们还提供了有关SCD1活性在SFA诱导的慢性炎症调节中作用的最新数据。关键词:单不饱和脂肪酸(MUFA);硬脂酰-CoA去饱和酶-1(SCD1);慢性炎症;饱和脂肪酸(SFA);代谢综合征 1. 代谢综合征炎症肥胖是导致代谢综合症发展的主要因素,其特征是代谢并发症包括内脏肥胖,高血压,高循环胆固醇和血糖升高[1-3]。这种病理学组合通常会导致胰岛素抵抗和2型糖尿病,并伴有持续的炎症[4,5]。在北美,体重指数(BMI)高于30的人被视为肥胖。这约占北美人口的36%,全球约13%[6]。肥胖症的特征在于脂质在脂肪组织中的过度积累。当这种积累发生在内脏脂肪中时,就会变得有害[7]。实际上,腰围(间接测量内脏脂肪堆积)与特定代谢疾病的发展有关,包括心血管疾病,高胆固醇血症和2型糖尿病[8]。当脂肪组织中过多的脂质积累发生时,异位积累(脂肪变性)就会出现在其他组织(例如肝脏和肌肉)中[8-10]。饱和脂肪细胞通过脂肪酸转位酶(FAT /CD36),血浆脂肪酸结合蛋白(FABPpm)和脂肪酸转运蛋白(FATP)的作用将游离脂肪酸释放到血液中。这些循环的游离脂肪酸随后被其他器官(尤其是肝脏和肌肉)捕获,从而导致脂肪变性[11,12]。非脂肪细胞中长链脂肪酸的积累会导致有毒脂质的形成,例如神经酰胺和胆固醇酯[13]。这些脂质会诱发脂中毒,导致有害的代谢后果,包括内质网(ER)应激和炎症[14,15]。几项人群研究表明,肥胖患者经常发生轻度和慢性炎症[16]。其特点是由脂肪组织产生的促炎性细胞因子(尤其是白介素-6(IL-6))和趋化因子MCP-1的循环水平增加。因此,单核细胞被募集到脂肪组织中,诱导其他细胞因子如IL-1β的分泌并增强炎症状态[17,18]。为了应对细胞因子水平升高,肝脏分泌C反应蛋白(CRP),C反应蛋白是与包括2型糖尿病和心血管疾病在内的几种代谢疾病相关的炎症的关键标志[19-22]。 CRP还通过激活NF-κB信号传导通路促进疾病发展,这直接与促炎性细胞因子的表达有关[23]。 2.炎症的分子机制炎症有两种主要类型:急性和慢性。感染或受伤后会出现急性炎症。这种类型的炎症涉及多核中性粒细胞,其特征是受损组织周围出现肿胀和热量。 Toll样受体(TLR)的激活会触发炎症因子的表达,例如细胞因子,前列腺素,血小板活化因子,炎症小体复合物,CRP和NF-κB[24]。解决这种炎症需要几个条件:消灭炎症原因,中和促炎标记(细胞因子和前列腺素)以及清除中性粒细胞。这些事件通常会在几天内发生,从而自然而然地导致这种类型的炎症[25]。第二种类型的炎症,即慢性炎症,会随着时间的流逝而持续,对健康的危害更大。它通常出现在饮食习惯和久坐的人中,与肥胖的发展密切相关[26,27]。它也存在于不同的病理学中,例如阿尔茨海默氏病和哮喘,以及与代谢不平衡相关的几种疾病,例如动脉粥样硬化,心血管疾病和2型糖尿病[28-31]。它通常被称为微炎症或代谢炎症,它涉及复杂的机制,涉及整个人体各组织(例如肝脏和脂肪组织)之间的串扰。通常,这种低度炎症是在免疫系统识别出细胞应激时出现的[32]。因此,单核细胞被募集并渗入组织,成为巨噬细胞[24]。在诸如肥胖的炎性病症中,在受影响的器官中可以发现两个不同的巨噬细胞亚群。这些与不同的功能关联。所谓的M1巨噬细胞显示出极端的促炎状态。它们表达高水平的促炎性受体,例如TLR,肿瘤坏死因子受体(TNFR)和白细胞介素-1受体(IL-1R),并且对NF-κB转录因子的表达具有强大的激活作用,从而表达pro-炎性细胞因子。相反,Μ2巨噬细胞具有抗炎作用,其特征在于其白介素4受体(IL-4R)的表达更高,其激活下调了炎性介质,如TNF-α和IL-6。它们还显示出转录因子PPARγ和PPARδ的激活,从而导致抗炎细胞因子如IL-10的更高表达[33]。因此,组织中存在的炎症水平取决于浸润的M1和M2巨噬细胞之间的平衡。这种平衡可以通过饮食和荷尔蒙状态进行调节,并受PPARγ转录因子的调节[34]。在慢性炎症的背景下,已经发现了许多潜在的炎症触发因素。 TLR4通过循环长链饱和脂肪酸而被激活[35]。因此,IKK-IκB信号级联反应导致NF-κB核移位,从而激活了几种促炎性细胞因子和白介素的转录[36]。观察到高循环水平的促炎细胞因子如TNF-α,MCP-1,TGF-β和IFN-γ以及白介素IL-6,IL-1β,IL-18和IL-8表现出炎症状态的患者[37]。TLR4激活还与炎症小体(负责炎症反应激活的多蛋白复合物)形成中的几种蛋白质的表达增加有关。特别是对于NLRP3(类似于NOD的受体家族,含3个吡啶域),一种炎性小体复合物,涉及与慢性和低度炎症相关的几种疾病[38,39]。NLRP3被认为是一种细胞内受体,负责激活炎症反应。多种因素可以激活NLRP3,包括细胞内ATP浓度升高,活性氧(ROS),线粒体氧化的DNA和溶酶体去稳定化[40]。低细胞内钾或高钙浓度也可以激活它,这是对细胞应激的反应[40]。随着NLRP3的激活,NLRP3复合物的半胱天冬酶1亚单位将促白介素裂解为成熟的IL-1β和IL-18,这是低度炎症的关键循环标志物[41]。 NLRP3被认为是导致慢性炎症诱导和发展的关键因素。实际上,破坏脂肪组织中的NLRP3可以降低肥胖小鼠的促炎细胞因子浓度,并恢复其胰岛素敏感性[42]。慢性炎症发展的另一种机制涉及在脂肪组织中过度储存甘油三酸酯(TG)脂质。久坐不动的生活方式和不良的饮食习惯加剧了这种TG储量的不平衡。在小鼠中,TG过多地储存在白色脂肪组织(WAT)中会诱发促炎性脂肪因子(如IL-1β,TNF-α,MCP-1和IL-6)的分泌,从而引发全身性代谢性炎症[43]。此外,过多的TG储存会增加脂解作用,并增加细胞内和循环中游离脂肪酸(FFA)的量(图1)。这些脂肪酸可作为压力诱导分子,被TLR4捕获,诱导NF-κB活化,进而诱导巨噬细胞NLRP3表达(图1)。此外,细胞内FFA可能损害线粒体和溶酶体完整性,产生ROS(图1)[44]。 FFA还可以使细胞内能量传感器丝氨酸-苏氨酸激酶AMPK失活。在这种情况下,IL-1β的分泌(通过激活NLRP3炎性小体)增加,导致胰岛素敏感性降低[45]。几位作者甚至提出,在代谢性炎症的背景下,AMPK的激活可以被认为是一种抗炎标记[46,47]。图1.脂肪细胞和巨噬细胞之间的串扰导致炎症增强。 SFA(饱和脂肪酸)超负荷产生的FFA(游离脂肪酸)激活TLR4途径,导致MCP-1(单核细胞)脂肪细胞通过NF-κB(核因子-κB)核转运分泌化学引诱蛋白-1),IL-6(白介素-6)和TNF-α(肿瘤坏死因子α)。 TNF-α激活募集的巨噬细胞上的TNFR(肿瘤坏死因子受体),与TLR4途径结合,触发NF-κB核输入和NLRP3的产生(类NOD受体家族,含3个吡啶域),pro-IL-。 1β和pro-IL-18。 ATP(三磷酸腺苷)和ROS(活性氧)积累的结果导致溶酶体破坏,触发NLRP3活化并导致IL-1β/ IL-18成熟和分泌。这个数字是由BioRender生成的。 3.脂质代谢概述脂肪酸分子在结构上非常多样,因此涉及几种不同的生物学功能。例如,磷脂是细胞膜的组成部分,而TG主要参与能量存储。生物体中有两种脂质来源:饮食摄入和从头合成。在人类中,饮食中的脂质(例如胆固醇,甘油三酸酯)以及长链饱和和不饱和脂肪酸会以胶束的形式被肠内小肠细胞吸收。同时,短链和中链脂肪酸(碳链长度为2至10)可以直接穿过肠细胞膜并到达血流[48,49]。肠上皮细胞以乳糜微粒的形式将脂质分泌到淋巴和血液循环中。然后,肝脏使用提取的脂质组装包含载脂蛋白B-100(apoB-100)的极低密度脂蛋白(VLDLs),捕获部分乳糜微粒。分泌的循环VLDL将其脂质转移到生物体的其余部分,在此过程中变成低密度脂蛋白(LDL)。与该系统平行,肠上皮细胞和肝细胞分泌载脂蛋白A-1(apoA-I),与未捕获的鞭毛蛋白复合形成高密度脂蛋白(HDL)[50]。高密度脂蛋白的主要已知功能是隔离来自周围器官的胆固醇并将其带入肝脏[51]。有几种机制可以使脂质摄入细胞。胆固醇通过B型跨膜清道夫受体(SRB1)捕获[52],而整合到脂蛋白中的TG被脂蛋白脂酶在上皮细胞表面水解。然后,产生的FFA被细胞通过不同的转运蛋白(例如脂肪酸转运蛋白(FATP)和脂肪酸转位酶(FAT / CD36))吸收。内部化的FFA被迅速酯化为脂肪酸CoA,然后可以转化回TG。该酯化过程涉及各种脂肪酰基转移酶,例如GPAT(甘油3-磷酸酰基转移酶)和DGAT(二酰基甘油O-酰基转移酶)。新形成的TG随后被整合到细胞内脂质小滴(LDs)中,并在那里储存[53]。 LDs存在于所有真核细胞中。在正常情况下,脂质优先存储在脂肪细胞中,形成非常大的LD。在脂肪细胞饱和的情况下(如肥胖症),脂质可以储存在其他细胞中,例如肝细胞和肌细胞,形成较小的LD [54]。这种异位贮藏常常导致代谢紊乱及其相关的炎症。生物体中脂质的另一个来源来自从头脂质合成,也称为脂肪生成。这个过程发生在大多数细胞中,但在人类中,它主要发生在肝细胞(图2)和脂肪细胞中[55]。脂肪生成从葡萄糖水解产生的乙酰辅酶A合成长链饱和脂肪酸(棕榈酸酯)。乙酰辅酶A羧化酶(ACC)和脂肪酸合酶(FAS)的共同作用可催化这种合成。随后,饱和脂肪酸(SFA)通过脂肪酸延长酶(ELOVL)延长[56]和/或通过硬脂酰CoA去饱和酶(SCD)进行去饱和,从而形成单不饱和脂肪酸(MUFA)[57]。图2.肝脏中甘油三酸酯的产生。乳糜微粒将脂肪酸(主要是棕榈酸酯和油酸酯)带入肝脏,并由GPAT(甘油3-磷酸酰基转移酶),AGPAT(1-甘油甘油-3-磷酸-O-酰基转移酶)和DGAT(二酰基甘油)使用-O-酰基转移酶)产生甘油三酸酯。另外,也可以从图1重新合成脂肪酸(硬脂酰CoA去饱和酶-1)和ELOVL6(脂肪酸延长酶6)。甘油三酸酯被组装成LD(脂滴)和/或与apoB-100(载脂蛋白B-100)结合成VLDL(极低密度脂蛋白)分泌。该数字是通过Servier Medical ART生成的。 SCD是MUFA形成的限速酶。它们被整合到ER膜中,并受到营养状况和食欲的激素调节剂如胰岛素的高度调节[58,59]。 SCD在SFA的硬脂酸酯(C18:0)和棕榈酸酯(C16:0)中引入了delta-9去饱和作用,分别形成了MUFA的油酸酯(C18:1n-9)和棕榈油酸酯(C16:1n-7)。这些MUFA是TG(优先储存的脂肪酸)[60],胆固醇酯(细胞膜成分,类固醇激素和胆汁酸的前体)[61]和蜡酯(防止蒸发失水的化合物)的主要成分。 [62]。它们也构成构成细胞膜的磷脂的大部分[57]。因此,SCD被认为是脂质稳态的关键调节剂,特别是在脂肪形成占主导的肝脏和脂肪组织中。 SCD活性的调节与代谢综合征及其相关的炎症状态的发展有关。因此,一些研究建议针对SCD,以治疗代谢综合征的各个方面,包括2型糖尿病和心血管疾病[63-65]。在人类中,有两种SCD亚型,即SCD1和SCD5。 SCD5主要在大脑中表达,而SCD1更广泛地表达[66,67]。在小鼠中,由于已鉴定出四种同工型(SCD1-4),因此情况更为复杂。它们都与人SCD1共享85%的氨基酸同源性,而SCD5似乎是灵长类特有的。小鼠SCD1主要在生脂器官如肝脏和脂肪组织中表达。 SCD2主要在大脑中表达,而SCD3在Harderian,包皮和皮脂腺中发现。仅在心脏中报道了SCD4表达[68-72]。 4. 硬脂酰-CoA去饱和酶-1SCD1是最具特征的SCD同工型。 SCD1将85%的硬脂酸酯和51%的棕榈酸酯(来自饮食和脂肪生成来源)转化为MUFA [68]。许多研究已经在SCD1基因敲除小鼠中进行了免疫印迹实验,以更好地了解其在代谢过程中的作用。全局SCD1敲除小鼠中,该生物的每个细胞均缺乏SCD1,表现为缺乏皮脂分泌和泪液表面活性剂[73]。皮脂的缺乏会导致皮肤干燥,头发少,并导致局部抑制SCD1作为治疗痤疮的潜在方法。高糖饮食(HCD)[76]和高脂饮食(HFD)[74,74]可以保护全球SCD1基因敲除小鼠免受肥胖[74],胰岛素抵抗[75]和脂肪肝疾病[61]的侵害。 75]。这些小鼠的血浆酮体水平升高,而循环中的胰岛素和瘦素水平降低[75]。通过葡萄糖耐量试验确定,血糖也得到改善。从脂质氧化的上调和脂质合成基因的下调可以看出,整体基因敲除小鼠的代谢谱比野生型小鼠更有益。[74,76]。由于整体敲除小鼠的差异,肝脏中SCD1特异性缺失的小鼠仅受到保护,免受HCD(而不是HFD)的有害影响。在HCD下,与对照组相比,肝特异性敲除小鼠肝脂肪酶基因表达降低,血浆TG降低[76]。可以预期的是,这些小鼠的肝脏脂肪变性和相关的代谢并发症(例如高胆固醇血症)减少。这与SREBP-1的激活减少(通过蛋白质成熟和核定位水平来衡量)以及脂解转录因子PPARα和线粒体摄取酰基转运蛋白肉碱O-棕榈酰转移酶1(CPT1)的蛋白质表达增加相一致。全球SCD1缺陷小鼠的肝脏[77]。然而,在HFD下,肝特异性敲除小鼠会发展为肝脂肪变性和胰岛素抵抗[78]。 HFD对肝脏特异性基因敲除小鼠的脂肪变性作用可能是由于饮食中存在SFA,可以将SFA饱和并整合到TG中,然后通过仍然表达SCD1的肠细胞整合到乳糜微粒中。然后,乳糜微粒可被肝脏捕获,导致肝脂肪变性和相关的肝功能障碍[76,79]。SCD1的表达主要受脂肪生成转录因子SREBP-1c控制[77,80]。在餐后情况下,血脂和血糖的升高会诱导胰岛素分泌,这是最重要的脂质合成代谢激素之一。胰岛素激活PI3K-PKB-mTORC1信号通路,从而诱导SREBP-1c的核易位并激活与脂肪形成有关的酶(包括SCD1)的表达[81]。饮食和激素因素(例如胰岛素和葡萄糖)激活了其他脂肪生成转录因子。SCD1,FAS和ELOVL6等生脂基因的表达是由肝脏X受体(LXR)触发的,该受体被胰岛素激活,并由自身被葡萄糖激活的碳水化合物反应元件结合蛋白(ChREBP)激活[82]。 SREBP-1c是脂质代谢(尤其是LXRα亚型)的主要LXR靶标之一,它驱动SCD1的表达[83]。此外,MUFA(SCD活性的产物)可以通过AMPK磷酸化来调节脂肪形成[84,85]。磷酸化的AMPK抑制了mTORC1复合物[86],从而减少了SREBP-1c的核易位以及诸如SCD1的生脂基因的表达。 5. 饱和脂肪酸在炎症中的作用5.1.人体研究—饮食中SFA的作用饮食中强烈影响动物有机体中脂质的类型[87]。饮食中的SFA对代谢健康有害,因为它们在肥胖,代谢综合症和慢性炎症的发生中起重要作用[88]。实际上,饮食中高水平的SFA本身可以被认为是促炎因素。几项研究描述了食用富含SFA的西方饮食与人类肥胖,肝脂肪变性和2型糖尿病之间的明确相关性[89-91]。富含SFA的饮食的急性摄入会触发人类皮下脂肪组织中炎症的发生,包括参与促炎性趋化因子和细胞因子合成的几种基因的表达增加[92]。此外,与不饱和脂肪酸丰富的饮食相比,富含SFA的饮食增加了脂肪在脂肪组织中的存储[90]。脂肪细胞发育更大的LD,因此含有更多的TG。这种增加的细胞内TG池导致脂肪细胞分泌瘦素的增加[93]。此外,高水平的瘦素与IL-1β,IL-6和TNF-α的巨噬细胞分泌增加有关[94,95]。一项临床试验表明,单次1000kcal膳食中所含脂肪含量为60%(主要是SFA)会导致血浆IL-6浓度升高[96]。这种类型的全身性炎症与导致冠心病的血管损伤有关[96]。 5.2.动物研究-膳食SFA的作用与对人体的观察一致,用富含饱和脂肪的饮食喂养啮齿动物会增加肝脏和血浆的TG水平,并增加循环IL-6的浓度[97,98]。动物还会出现葡萄糖耐量异常,而肝脏中巨噬细胞的募集增加[97,99]。这表明炎症是饮食引起的代谢变化的结果。的确,在15周内喂食含有大部分SFA的HFD的小鼠肝TLR4的表达增加[98]。这些动物的血浆IL-6,TNF-α和MCP-1浓度也升高,而抗炎细胞因子IL-10的血浆浓度降低[98]。富含SFA的HFD引起的小鼠由于棕榈酸酯和硬脂酸酯的积累而导致肌肉脂肪变性[100]。 SFA也可以诱发中枢神经系统的炎症。用HFD(主要由SFA组成)喂养8周的小鼠的大脑显示出高浓度的炎症标记物(IL-6,IL-1β和TNF-α)和低水平的IL-10 [101]。富含SFA饮食的小鼠在短短4周内显示出NF-κB活化增强,并且通过下丘脑中的TLR4活化,炎症性标记(IL-1β,TNF-α和IFN-γ)的表达达到以及在血浆中[102,103]。至少在小鼠中,这种炎症甚至可能导致肥胖。持续的HFD诱发的弓形核(下丘脑的一个特定区域,调节能量动态平衡,触发小胶质细胞募集并促进安全神经元的死亡)的炎症[104]。 5.3.细胞模型-外源SFA的作用含有几种脂肪酸混合物的饮食实现了体内研究,这些脂肪酸在消化过程中至少会部分转化。这使这些研究结果的解释复杂化。因此,已使用外源脂肪酸处理培养的细胞来确定预期在餐后循环中发现的特定SFA的作用。脂肪细胞模型可以深入了解脂肪组织内发生的体内机制。 3T3-L1前脂肪细胞和大鼠原发性附睾脂肪细胞与棕榈酸酯一起孵育24小时可诱导TNF-α和IL-6分泌[105]。这种治疗还增加了单核细胞趋化蛋白-1(MCP-1)的释放[106,107],它具有诱导巨噬细胞在体内募集以及极化成M1促炎状态的潜力。胰腺β细胞(1.1B4人细胞系和大鼠原代细胞)暴露于棕榈酸酯会增加IL-6和IL-8的分泌以及ROS的产生。它还与胰岛素分泌受损有关[108,109]。该过程有可能至少部分地解释为什么富含脂肪的饮食会导致2型糖尿病的发展。在小鼠小胶质细胞BV2中,棕榈酸酯处理4小时会诱导IL-1β,IL-6和TLR4基因表达,以及NF-κB诱导[103]。在RAW264.7小鼠巨噬细胞细胞系中,月桂酸(12碳链SFA)可以直接结合TLR4并激活NF-κB的核易位。随后,这会激活促炎性细胞因子,特别是TNF-α的表达[110,111]。用棕榈酸酯处理RAW 264.7细胞可抑制转录因子PGC-1β的表达,该因子间接激活NF-κB的核易位[112]。这导致培养基中炎性细胞因子TNF-α和IL-1β的分泌增加。有趣的是,当这种媒介是如果将其添加到培养的3T3-L1前脂肪细胞中,PI3K-PKB途径的激活会受到损害,提示胰岛素敏感性降低[113]。还已经在体外研究了SFA对肌肉细胞的作用。通过脂质滴大小观察到,用棕榈酸酯处理C2C12小鼠肌管细胞可增加脂质储存[114]。与其他细胞类型一样,这种细胞内脂质蓄积会引起脂质毒性(ROS和ER应激升高)和胰岛素抵抗(PKP信号传导中断)。它还会触发NF-κB核移位,从而导致促炎性细胞因子如TNF-α的表达[114]。 6. 单不饱和脂肪酸在炎症中的作用6.1.人体研究—饮食MUFA的作用尽管SFA会增加炎症,但不饱和脂肪酸通常会产生相反的效果。多不饱和脂肪酸(PUFA),尤其是omega-3类脂肪酸,对健康具有有益的作用。确实,一些人口研究表明,与富含SFA的西方饮食相比,富含omega-3PUFA的饮食至少部分地通过减少炎症来发挥有益的代谢作用[115-117]。MUFA对炎症的影响的文献报道较少,但是越来越多的证据将MUFA与抗炎状态联系起来[92]。膳食脂质在肠道中被吸收,然后转运至整个生物体,从而影响器官代谢。更高的MUFA消耗量会增加整个体内的MUFA水平,并同时降低SFA和PUFA [118]。因此,我们体内存在的脂质类型可以通过营养调节。地中海饮食的影响已在人类中进行了研究,包括数项随机交叉研究(表1)[119–121]。这种饮食的特点是大量食用鱼,橄榄油,水果和蔬菜以及全谷物。在这种饮食中,脂肪占大卡所吸收的三分之一,几乎被60%的MUFA和20%的SFA吸收[122]。相比之下,西方饮食中的总脂肪量相似,但MUFA的比例要低得多(MUFA为36%,SFA为33%)[119]。与其他饮食相比,地中海饮食与降低血压,改善血糖和血脂水平有关[123-125]。地中海饮食降低了患心血管疾病的风险,甚至导致肠道微生物组发生了有益的变化:增加了类细菌,小肠杆菌和费氏杆菌属,已知它们可以改善总体代谢健康并预防动脉硬化和血栓形成(表1)[121,126]。实际上,橄榄油是地中海饮食中的主要成分之一,已被表征为可改善宿主微生物生态系统的生源物质(表1)[120]。有趣的是,在食物中添加橄榄油(一种自然富含SCD1产品油酸酯的油)与肥胖症和代谢综合征的发生率低相关,因此,慢性炎症和死亡率降低了[127,128]。此外,食用地中海饮食的人通常表现出较低水平的全身性炎症,这在食用西方饮食或富含碳水化合物的饮食时通常会出现(表1)[129-132]。食用地中海饮食3到4周也与脂联素(一种具有抗炎作用的脂肪因子)的分泌增加有关[94,133]。当用橄榄油喂养受试者时,对炎症也有类似的观察结果(表1)[131,134,135]。用富含橄榄油的饮食喂养3到2年不等的受试者的循环单核细胞(参与炎症反应的单核细胞)水平较低。此外,与同期接受西餐的受试者相比,其血浆促炎细胞因子水平(例如TNF-α,MCP-1,IFN-γ,CRP,IL-18和IL-6)要低时间[131,136–138]。与一次性口服含牛乳霜的脂肪乳剂(25%的油酸酯和26%的棕榈酸酯)相比,橄榄油的乳剂(70%的油酸酯和15%棕榈酸酯)产生更有利的脂质血浆分布,包括富含MUFA的TG的较高血浆浓度。有趣的是,在同一研究中,作者将小鼠BV2小胶质细胞与来自这些受试者的纯化血浆脂蛋白一起孵育。治疗后,在富含MUFA的TG存在下,培养的细胞从M1炎症状态转变为M2抗炎状态[139]。另一项关于离体人类血液单核细胞的研究证实了这一观察结果[140]。查看更多文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2020-12-31 15:49:50
1型糖尿病相关的低血糖意识不清中炎症标志物的差异表达
案例报告YousefAl Zoubi1,2,Bashair M.Mussa 2,*,Ankita Srivastava 1,Abdul Khader Mohammed 1,Elamin Abdelgadir 3,Alaaeldin Bashier 3,FatheyaAl Awadi 3和Salah Abusnana 4,51. 沙迦大学医学研究所沙迦,阿联酋沙迦27272; u19105816@sharjah.ac.ae(Y.A.Z.); ankita2112@gmaicom(A.S.); amohammed@sharjah.ac.ae(A.K.M.)2. 沙迦大学医学院基础医学系,阿联酋沙迦272723. 迪拜卫生局,迪拜医院,阿联酋迪拜4545; alaminibrahim@hotmail.com(E.A.); alaaeldin11@gmail.com(A.B.);alawadi1122@hotmail.com(F.A.A.)4. 阿联酋沙迦大学附属医院糖尿病和内分泌科,阿联酋沙迦72772;萨拉赫.阿不思娜娜@UHS.啊哦5. 沙迦大学医学院临床科学系,阿联酋沙迦27272 * 通讯:bmussa@sharjah.ac.ae;电话:+ 971-65057220 摘要:降血糖事件的复发导致下丘脑控制的正常反调节机制减弱,从而导致低血糖意识不足(HU)。在本病例报告中,我们首次描述了从一名27岁1型糖尿病患者的血液样本中TNF-α,IL-1β,IL-6和IFN-γ的差异表达被诊断患有HU的糖尿病(T1DM)。该抗糖尿病方案目前基于胰岛素注射,但患者正计划开始使用胰岛素泵以更好地控制葡萄糖水平。我们的结果表明,T1DM合并HU的患者中IL-1β,IL-6和IFN-γ的表达有增加的趋势。然而,TNF-α的mRNA水平显示出显着降低。这些观察结果表明全身性炎症可能是HU的根本原因。 关键字:低血糖意识;1型糖尿病;细胞因子炎性标记TNF-α; IL-1β; IL-6;干扰素1. 介绍葡萄糖是大脑的主要能源,可用于促进一些关键过程,例如认知功能[1,2]。低水平的葡萄糖会触发反调节反应(CRR)的激活,该反应主要涉及肾上腺素的释放[3]。下丘脑中的葡萄糖敏感神经元致敏后,交感神经系统介导肾上腺髓质中肾上腺素的分泌[4-6]。医源性降血糖发作的复发经验会导致CRR紊乱,这被称为低血糖相关的自主神经功能衰竭(HAAF)[5,7,8]。后者主要是由于在1型糖尿病(TIDM)患者中使用抗糖尿病药物,尤其是基于胰岛素的治疗引起的[9]。 CCR功能失调的主要结果是肾上腺素对低血糖反应迟钝,进而导致人们对低血糖症一无所知[10]。低血糖无意识(HU)是由于无应对低血糖的自主神经警告症状而出现无症状性低血糖的情况[7]。尽管复发性降血糖发作是导致HAAF的主要原因,但其机制尚不清楚。我们建议低水平的葡萄糖是神经炎症的病因候选物,并且对下丘脑神经元的存活产生不利影响,最终导致到HU。先前的研究通过显示低水平的葡萄糖在糖尿病患者中引起炎症反应来支持这一假设[11]。在此,我们报告一例被诊断患有HU的T1DM患者,我们旨在调查炎症与HU之间的关系(如果有)。2.案例描述2.1.低血糖意识不足(HU)患者自2014年以来,一名27岁的女性被诊断患有T1DM已有8年,其反复出现严重的低血糖和HU。该患者被送至诊所,体重为56公斤,体重指数(BMI)为22.43千克/平方米。该患者的最新空腹血糖和HbA1c分别为258 mg/dl和7.8%。她经常在晚上和不吃午餐时经历无症状的低血糖症。除了对HU的诊断外,她两年前还被诊断出维生素D缺乏症。由于持续使用胰岛素注射剂,她的手臂和大腿有轻度的脂肪肥大。尚未报告与当前状况有关的家族史。2.2.当前和将来的治疗干预该患者目前正在接受超长效胰岛素和速效胰岛素治疗的联合治疗。她每天晚上服用22 U /天的胰岛素地高铁,每天服用总共36 U /天的赖脯胰岛素,分为三剂,早餐前10 U,午餐12 U,晚餐14U。此外,由于维生素D缺乏症,她每天需要服用1片50,000 U胆钙化固醇。未来的管理计划包括使用胰岛素泵以更好地控制血糖。2.3.血样采集和炎性生物标志物评估从HU患者和其他两个受试者中采集了5 mL血液样本:BMI为21.16 kg / m2的30岁T1DM患者和没有糖尿病或任何其他疾病的24岁健康人。本研究是在沙迦大学医院(UHS),迪拜医院(DH)和沙迦医学研究所(沙迦大学,UOS)进行的。该研究获得了UHS伦理委员会(UHSREC042018,2018年4月),卫生署(DSREC-09 / 2018_13,2018年10月)和UOS(REC-17-08-0801,2017年11月)的伦理委员会的批准并进行根据赫尔辛基宣言。要求所有参与者签署以他们的母语写的知情同意书。按照制造商的规程,使用QIAamp RNA Blood Mini Kit(Qiagen,Hilden,德国)从全血中提取总RNA。然后,通过Nanodrop2000分光光度计(Thermo Fisher Scientific,沃尔瑟姆,马萨诸塞州,美国)对分离的RNA进行定量,并通过A260 / A280的比值确定纯度。然后使用高容量cDNA合成试剂盒(美国加利福尼亚州福斯特城的Applied Biosystems)将RNA反转录为1000 ng / mL cDNA。使用QuantStudio 3实时PCR(Applied Biosystems,Foster City,CA,USA)系统进行定量促炎细胞因子基因表达的定量实时PCR(qRT-PCR)实验,总反应量为10 µL包含5 µL 1PowerSYBR 绿色预混液(AppliedBiosystems,FosterCity,CA,美国),1 µL10 µM正向和反向引物(表1),1 µL NFW和2 µL cDNA。循环参数包括在95℃下初始化2分钟,然后在95℃下变性15 s,然后在60℃下退火1分钟,并在60℃下延伸60℃。1分钟,共40个循环。相对基因表达采用2(∆ΔCt)方法确定,甘油醛3-磷酸脱氢酶(GAPDH)被用作看家基因。表1列出了用于特异性扩增TNF-α,IL-1β,IL-6,IFN-γ和GAPDH的人引物序列。用NFW代替cDNA实施的样品被视为阴性对照。表1.用于定量实时聚合酶链反应的人类引物。 2.4.T1DM和HU中炎症标志物的基因表达在qRT-PCR实验中,我们旨在比较T1DM合并HU的患者,无HU合并T1DM的患者以及健康受试者的血液样本中四种细胞因子的mRNA表达。如图1A所示,与健康受试者(对照组)相比,没有HU的T1DM患者和患有HU的T1DM患者的TNF-α表达显着增加,而在没有HU的T1DM患者中,TNF-α表达显着升高。与没有HU的T1DM相比,没有HU的T1DM。 图1.有和没有HU的TIDM患者中炎症标志物的差异基因表达。(A,B,C和D)分别显示健康,没有HUMAN的TIDM和带有HUMAN的TIDM中TNF-α,IL-1β,IL-6和IFN-γ的表达(**** p <0.0001,*** p<0.001,** p <0.01,* p <0.05)。缩写;HU,低血糖意识不足; ns,无统计学意义;无HU,无低血糖意识;w HU,对低血糖症一无所知。与TNF-α不同,与没有HU的T1DM患者相比,患有T1DM和HU的患者IL-1β表达增加。但是,这种差异在统计学上并不显着(图1B)。与对照组相比,在患有和不患有HU的TIDM患者中,IL-1β的表达均显着较高。在IL-6的表达中观察到类似的模式,在有或没有HU的T1DM患者中,IL-6的表达明显高于对照组。此外,与没有HU的患者相比,在HU的患者中观察到IL-6的表达呈上升趋势,但此结果在统计学上不显着(图1C)。如图1D所示,与健康对照组相比,有和没有HU的T1DM患者中IFN-γ的表达均得到了显着提高。尽管与没有HU的T1DM的患者相比,TIDM和HU的患者中IFN-γ的表达有增加的趋势,但这种增加没有统计学意义。3.讨论区HU是一种非常具有挑战性的医学疾病,患者会失去识别低血糖发作的能力,这会增加出现严重后果(例如昏迷)的风险[12]。 HU的发病机理尚待阐明。然而,先前的研究表明低血糖与炎症之间存在联系[12-14]。本报告旨在调查HU与全身性炎症之间的关系(如果有)。我们已经证明,患有HU的T1DM患者的TNF-αmRNA水平约为没有HU的患者的一半。这一发现可能与一些研究相反,这些研究表明,与血糖正常的患者相比,T1DM患者在低血糖期间TNF-α血浆水平升高[15]。但是,这可以由以下事实解释:本报告仅包括一例HU。此外,以前的报告仅调查了与HU不同的低血糖病例。后者涉及低血糖的反复发作,从而导致下丘脑神经功能的操纵。另一方面,以前的研究表明,与其他细胞因子相比,神经系统疾病表现出TNF-α的不同功能作用,这反映了TNF-α对大脑网络的独特影响。已发现更长的TNF-α表达持续时间对于产生该试剂对神经元的不利作用是必需的。这可能为我们的报告[16]中的TNF-α差异表达提供了另一种解释。患有HU的T1DM患者的血液样本中的IL-1βmRNA显示较高水平高于没有HU的T1DM患者。这可能与Nematollahi等人的观点一致。研究表明,健康受试者在胰岛素诱导的低血糖后,IL-1β水平升高[12]。此外,在患有低血糖意识受损的T1DM患者中,IL-6的mRNA表达水平也比有意识的患者更高低血糖症。IL-6是与低血糖相关的最常研究的细胞因子之一。先前的研究表明,高IL-6血浆水平与频繁的低血糖发作有关[17]。最后,对IFN-γ的研究被认为是本研究的新颖方面之一,因为先前的研究均未包括与HU有关的该药物。本报告已经发现与没有HU的患者相比,HU的患者的IFN-γmRNA水平升高。但是,没有统计学意义。尽管目前尚无研究表明低血糖与IFN-γ之间存在任何关系,但已发现IFN-γ破坏了糖尿病脑中大脑的免疫细胞[18]。有趣的是,最近的研究表明,IFN-γ代表糖尿病与痴呆等神经退行性疾病之间的联系[19]。因此,在本研究和我们的未来研究中将IFN-γ包括在内将引起极大的兴趣。我们报告中的主题数量可以视为该研究的主要局限性。在所有招募的T1DM患者中,仅发现一名确诊为HU的患者。在未来的研究中,可以通过使用多中心方法增加样本量来改善这一点。该病例报告的结果表明,假设后者是HU的根本原因,则表明HU与炎症之间存在关系。我们的结果显示,T1DM患者中IL-1β,IL-6和IFN-γ的表达有增加的趋势。然而,TNF-α的mRNA水平显示出显着降低。这些观察结果表明,全身性炎症可能是HU的根本原因。因此,未来需要功能强大且严格的对照研究来进一步评估下丘脑炎症在HU病理生理中的作用。 作者贡献:Y.A.Z.和B.M.M.构思并设计了研究。 Y.A.Z.和A.K.M.进行了实验和数据分析。 B.M.M.解释了结果。 Y.A.Z.起草了手稿。 E.A.,A.B.,F.A.A. S.A.筛选了患者并修改了手稿。 B.M.M.和 参考文献1. 页,K。阿罗拉(J.邱敏;Relwani,R.;康斯特布尔(R.T.);舍温,R.S.在释放反调节激素之前,全身葡萄糖的小幅下降会引起下丘脑血流量的增加。糖尿病,2008,58,448-452。 [CrossRef][PubMed]2. Wrighten,S.A .; G.G. Piroli;格里洛市Reagan,L.P.糖尿病大脑内部的外观:糖尿病诱发的大脑衰老的原因。 Biochim。生物物理学。 Acta(BBA)分子。基础疾病2009,1792,444–453。 [CrossRef][PubMed]3. Cryer,体育糖尿病患者低血糖相关的自主神经功能衰竭。上午。 J.生理学。代谢2001、281,E1115–E1121。 [CrossRef][考研]4. Z.KamenovTraykov,L.糖尿病自主神经病变。实验医学与生物学进展;施普林格:2012年,德国柏林/海德堡;第176–193页。 [CrossRef]5. 周丙; Teegala,S.B .;Khan,文学士;冈萨雷斯(C. Routh,V.H.低血糖症:下丘脑葡萄糖抑制(GI)神经元在检测和纠正中的作用。面前。生理学。 2018,9. [CrossRef] [PubMed]6. Cryer,体育预防和纠正低血糖症。比较生理学。 2011,1057–1092。 [CrossRef]7. A. Szadkowska;Czyz˙ewska,K.;彼得拉扎克(I.)B.Mianowska;Jarosz-Chobot,体育;Mys´liwiec,M.对1型糖尿病患者的低血糖缺乏意识。小儿科内分泌醇。糖尿病代谢2018,2018,126–134。 [CrossRef] [PubMed]8. 黄,J.J .;帕里克Lacadie,C .;徐D;林W.哈姆扎Schmidt,C .;戴峰; Sejling,A.-S .; Belfort-DeAguiar,R .;等。对1型糖尿病患者缺乏低血糖症意识会抑制大脑对低血糖症的反应。 J.临床。调查。 2018,128,1485–1495。 [CrossRef] [PubMed]9. 杰德斯(J.乔普曼(J.E.); N.N. Zammitt;弗里尔成人1型糖尿病患者低血糖意识受损的患病率。糖尿病中2008,25,501–504。 [CrossRef] [PubMed]10. Cryer,体育糖尿病患者低血糖相关的自主神经衰竭及其组成综合征的机制。 2005年糖尿病54,3592–3601。 [CrossRef][PubMed]11. Piarulli,F.;G.Sartore; A. Sechi;巴索,D。 Fogar,体育;Greco,E。 E. Ragazzi; Lapolla,A.低血糖浓度会在2型糖尿病患者和健康受试者的单核细胞中引起类似的炎症反应。氧化医学。细胞。朗耶夫。 2017、2017、1-6。 [CrossRef] [PubMed]12. Giorda,C .; AMD的HYPOS-1研究组; Ozzello,A。外邦人Aglialoro,A .; Chiambretti,A .; Baccetti,F。外邦人;卢卡萨诺(G. Nicolucci,A.;等。1型糖尿病严重和症状性低血糖的发生率和危险因素。 HYPOS-1研究的结果。糖尿病学报。2015,52,845–853。 [CrossRef] [PubMed]13. Nematollahi,L.R .; A.E. Kitabchi; F.B. Stentz; Wan,J.Y.;拉里贾尼(B.A.);泰拉尼(MM)M.H. Gozashti;肯塔基州Omidfar; Taheri,E.在健康受试者中对胰岛素诱导的降血糖应激反应的促炎细胞因子。代谢2009,58,443-448。 [CrossRef]14. Kiec´-Wilk,B .; B.Matejko;美国拉兹尼;斯坦基维奇,M。 Skupien,J .;克鲁帕(T.M.T.Malecki降血糖发作与1型糖尿病患者的炎症状态有关。动脉粥样硬化2016,251,334–338。[CrossRef] [PubMed]15. Ezcurra,A.L.D.L .;切尔托夫法拉利角; Graciarena,M.; Pitossi,F.在黑质中低水平的肿瘤坏死因子-α的慢性表达引起进行性神经变性,运动症状延迟和小胶质细胞/巨噬细胞活化。神经生物学。 Dis。 2010,37,630–640。 [CrossRef] [PubMed]16. N.G.乔伊;马里兰州赫德灵顿;布里斯科(V.J.);塔特(Tate)埃尔特(Atl)戴维斯(S.N.)急性低血糖对1型糖尿病个体和健康个体的炎症和动脉粥样硬化血栓形成生物标志物的影响。糖尿病护理2010,33,1529–1535。 [CrossRef]17. 江娥; Chapp,A.D .;范Y;拉森(Rarson)T.Hahka;休伯(M.J.);严建陈庆辉;Shan,Z.在dahl盐敏感性高血压大鼠的下丘脑室旁核中促炎性细胞因子的表达上调。面前。生理学。 2018,9,104. [CrossRef] [PubMed]18. 泰勒,S。 E.Mehina;白,E。 Reeson,P .;永布拉(Kongblah);道尔(K.P.)布朗(C.E.)抑制干扰素-γ刺激糖尿病人大脑中的小胶质细胞反应和微出血的修复。 J.神经科学。 2018,38,8707–8722。 [CrossRef][PubMed]19. D. Cozachenco;塞勒斯,MC;里贝罗(FC) γ-干扰素是糖尿病和痴呆症之间的潜在联系。 J.神经科学。2019,39,4632-4635。 [CrossRef][PubMed] 点击查看:更多医学类文章 其他分类文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:MDPI
2020-12-25 18:01:56
血液循环因子能否发挥作用并延缓您的生物衰老?(结论)
血液循环因子能否发挥作用并延缓您的生物衰老?(上)血液循环因子能否发挥作用并延缓您的生物衰老?(中)5. 结论生物的衰老伴随着生物年龄的增加,从理论上讲,这应该与日历年龄在时间上相关。但是,某些内部病理条件和环境影响会减慢或加速自然衰老过程[2,4,6,9,10,257,258]。5.1. 血管和神经系统衰老在遗传和环境因素的压力下,单位体积的毛细管网络密度会随着年龄的增长而降低。这与体重增加和调节血管生长的生长因子(包括EGF,VEGF,bFGF,PDGF-AB,BMP9 / ENG)的表达自然降低有关(表2)[54,145]。由于NGF表达减少和其他因素,调节血管的血管舒缩反应的神经元数量减少,导致毛细血管的最大管腔大小减少,并减弱了对压力的反应。伴随着激素的变化,肾素-血管紧张素系统的衰减[24,238,259,260],生长和脉管的调节受损也导致肌肉活动下降,血液凝结增加(也由于高vWF水平)和上升血压随年龄增长[260]。另外,红细胞中血红蛋白浓度的降低导致外周组织中的缺氧性疾病,这反过来增加了生物体中病理性疾病的可能性。免疫反应的普遍减弱,免疫细胞的衰老和组织血液供应的减少会导致慢性感染。这进而改变了生化血浆指标,特别是增强了炎症指标(如PUFA,新蝶呤,β2-微球蛋白,纤维蛋白原)的分泌(表1)。 5.2. 系统性发炎同时,在血浆中,促炎性细胞因子(IL1β,IL6,IL27,TNFα),趋化因子(CCL11,CCL27)和淋巴细胞向炎症部位迁移的分子(可溶性VCAM1)增加。 ,ICAM1和vWF)(表2)[226]。年龄相关炎症的另一个迹象是uPAR +衰老细胞的积累,它会分泌促炎性细胞因子PAI-1和TGFβ。后者减慢了免疫细胞的增殖活性,也可能导致小生境细胞转化为促炎表型[117]。血浆中炎症标志物浓度的增加也与神经和心血管系统的损害有关,并且可以大大缩短预期寿命[206,210]。血液中与年龄有关的代谢物积累会增加炎症反应,这也常常导致心血管系统损伤和肾功能不全(表1)[97,101,112,117]。白蛋白或BUN /肌酐比值和血液中钙水平升高与过早死亡风险和寿命缩短有关[58,59,210]。5.3. 再生和代谢紊乱在衰老过程中,炎症,新陈代谢的变化以及再生和修复能力下降会导致老年性疾病的发展。与年龄相关的影响肌肉组织再生的因子(例如GDF11,PDGF-AB等)的表达变化和分解代谢因子(GDF8,激活素A等)的增加导致心脏和骨骼肌再生的减慢应对伤害[118,127,133]。一方面,随着年龄的增长,生长激素和催产素水平的下降与包括再生过程在内的所有身体系统的生长发育普遍减慢有关。另一方面,由于IGF-1 / IGFBP-3比率的增加,这刺激了高mTOR依赖的代谢活性和胰岛素抵抗[150]。在健康的细胞中,线粒体产生超氧化物歧化酶(SOD),该酶可中和活性氧(ROS),保护细胞器免受损害。 mTOR复合物的高活性降低了自噬,线粒体和SOD的产生。结果,受损的线粒体数量增加,这反过来又刺激了ROS的积累,导致了进一步的细胞损伤[29,33,37]。在一起,代谢活动增加,线粒体功能受损,不足保护性氧化还原分子(例如H2S)的浓度升高和炎症促使NAD +和ROS积累大量消耗[85,86,261]。细胞衰老的这些事件进一步触发了高级病理过程,衰老细胞的积累以及与年龄有关的疾病的发展[262]。 5.4. 观点阻止对寿命产生负面影响的因素是防止早期残疾并延长老年人的活跃寿命的合理策略。在此类策略中,通过临床实践进行测试或将转化为临床实践,可以突出显示通过饮食限制来克服胰岛素抵抗[8],增加血液循环中的FGF21,胰岛素抵抗的药物治疗(例如,用脱氢表雄酮和二甲双胍[12,14],GH,催产素,GDF11和TIMP2刺激组织修复[203],bFGF,EGF,VEGF,PDGF-AB和BMP9促进血管再生,通过施用抗氧化剂来预防“发炎”的发展-炎症分子,包括COX-2抑制剂,白三烯受体拮抗剂,TIMP2或其他基质金属蛋白酶抑制剂[210,263],可通过施用TM5441类似物克服细胞衰老,并通过mTOR抑制剂(雷帕霉素类似物)优化自噬和线粒体[264] ,含TGF-β抑制剂[110,264],抗氧化剂治疗[265,266],减少NAD +衰竭[73]。上面讨论的指标和机制反映了自然和病理性衰老过程。在这篇综述中,我们提议对生物年龄指标和标记物进行全面监测,以显示衰老生物的功能变化(表1和2)。我们还接近有希望的途径,可以进行进一步的研究,以开发健康保护,延缓衰老和让老年人恢复健康,延长活跃寿命的复兴前景。 作者贡献:概念化:N.R.,S.R.,T.B.,A.K .;写作—原始草案:N.R.,S.R .;写作-审核和编辑:N.R.,TB.B.,A.K.,S.R .;验证:N.R.,T.B.,A.K.,S.R .;监督:A.K.,S.R .;资金获取:TB。项目管理:N.R.,TB。所有作者均已阅读并同意该手稿的发行版本。资金:这项工作得到了俄罗斯科学基金会(No. 19-18-00058)的支持。致谢:作者要感谢George Fatyanov的技术帮助。利益冲突:作者声明没有利益冲突。参考文献(展示部分文献,可在原网站查看全部)1. 布莱赫尔(M.B.);卡恩(B.Kahn,C.R.在脂肪组织中缺乏胰岛素受体的小鼠中延长寿命。科学2003,299,572–574。 [CrossRef] [PubMed]2. Yegorov,Y.E .;波兹尼亚克(A.V.);N.G. Nikiforov; I.A. Sobenin;奥尔列霍夫慢性应激与加速衰老之间的联系。生物医学2020,8,198。[CrossRef] [PubMed]3. T.V. Pyrkov; E. Getmantsev。朱洛夫,B .;阿夫恰西奥夫(K.皮亚特尼斯基(M.门希科夫Khodova,K .;古德科夫(A.V.)费迪切夫(P.O.)基于运动活动记录的生物学年龄和虚弱的定量表征。老龄化(纽约州奥尔巴尼),2018年第10期,2973–2990年。 [CrossRef][PubMed]4. T.N. Berezina; N.N. Rybtsova; Rybtsov,S.A.在居住在俄罗斯的调查类型的专业人员和进入欧盟国家的俄罗斯移民中,个体老龄化的比较动态。欧元。 J.调查健康心理。教育。 2020,10,749–762。 [CrossRef]5. Bai,X.衰老的生物标志物。进阶经验中生物学2018,1086,217–234。 [CrossRef] [PubMed]6. 哈姆齐克(M.R.)内华达州A. Barettino;福斯特(V.) V.Andrés,《生物与时序老化》:JACC焦点研讨会。J.上午Coll。乙二醇。2020,75,919–930。 [CrossRef]7. 加斯米(M.塞拉米丹纳姆(Denham);帕杜洛,J. Kuvacic,G .; W.Selmi;哈利法河(R. Khalifa,R.)限时喂食会影响免疫反应,而不会影响老年人的肌肉性能。营养2018,51–52,29–37。 [CrossRef]8. 星野S.小林Higami,Y.卡路里的抗衰老和延寿作用的机制限制:转基因动物研究的证据。老化(纽约州阿尔巴尼),2018年第10期,2243-2251年。 [CrossRef]9. T.N. Berezina;肯塔基州布扎诺夫; Zinatullina,A.M.; A.A. Kalaeva;梅尔尼克(V.P.)对退休的期望是一种心理压力,会影响俄罗斯联邦人的生物学年龄。宗教牧师牧师Soc。人形。 2019,4,192–198。10. Bunning,B.J .;肯特雷波瓦; Lee-McMullen,B .; Dhondalay,G.K.R .;张伟图帕,D。俄亥俄州雷伯; M.Desai;纳多市;斯奈德,硕士;等。全球新陈代谢分析,以模拟双胞胎衰老的生物学过程。老化细胞2020,19,e13073。 [CrossRef]11. Piber,D.;奥尔姆斯特德河。 Cho,J.H.J .;威塔拉玛(T.佩雷斯角; Dietz,N.; T.E. Seeman; E.C.布赖恩;科尔,西南;Irwin,M.R.发炎:老年人的年龄和全身,细胞和核发炎生物学。J. Gerontol。老师传记。科学中科学2019,74,1716–1724。[CrossRef] [PubMed]12. 托雷斯,W。 Nava,M .; N.Galbán;戈麦斯(Y.莫里洛(V. Rojas,M .;卡诺,C。Chacín,M .;路易斯,D.M .;赫拉佐,Y .;等。二甲双胍的抗衰老作用:分子和治疗学观点。 Curr。药德斯2020,26,4496-4508。[CrossRef] [PubMed]13. Zhavoronkov,A.减少和保护人的疾病的策略,以减少在嗜热和Gerolavic感染中的合并症,感染率,严重程度和致死率。老化(纽约州阿尔巴尼),2020年,第12期,6492–6510。 [CrossRef] [PubMed]14. Fahy,GM; R.T.布鲁克;沃森(J.P.);好,Z。 S.S. Vasanawala; Maecker,H .;医学博士莱波德;林D.T.S .; M.S. Kobor; Horvath,S.人类表观遗传衰老和免疫衰老趋势的逆转。老化细胞2019,18,e13028。 [CrossRef] [PubMed]15. Skrzep-Poloczek,B .; Poloczek,J。 E.杜尔斯卡(A.)E. Romuk;Idzik,M .; W.Kazura; Nabrdalik,K .; J.Gumprecht; Jochem,J .;等。肥胖大鼠的红细胞和心肌中的氧化应激标记物:与高脂饮食有关,而与DJOS减肥手术无关。抗氧化剂(巴塞尔)2020,9,183。[CrossRef] [PubMed]16. Simpson,S.J .;Le Couteur,D.G .;劳本海默(D. Solon-Biet,S.M.; Cooney,G.J.; V.C. Cogger; Fontana,L.膳食蛋白质,衰老和营养结构。老化水库。 Rev. 2017,39,78-86。 [CrossRef][PubMed]17. 新界布罗斯基; K.L. Marlatt;大多数,J。马里兰州埃里克森;欧文(B.A.)雷德曼,LM。人类衰老的灵丹妙药:卡路里限制与运动。锻炼体育科学。修订版2019,47,169–175。 [CrossRef]18. Coenen,P .;休斯曼斯,硕士Holtermann,A .;北卡罗来纳州范·梅赫伦(W.斯特拉克(L.M.);范德贝克(A.J.从事体育锻炼的工人会早死吗?对来自193696名参与者的数据进行荟萃分析的系统评价。Br。 J.运动医学。 2018,52,1320–1326。 [CrossRef]19. 马多雷角;尹中莱博维茨,J。Butovsky,O.小胶质细胞,生活方式压力和神经退行性疾病。免疫2020,52,222–240。 [CrossRef]20. Barcena,C .; Valdes-Mas,R .;市长,体育;加拉巴亚杜兰德,S。 Rodriguez,F .;费尔南德斯-加西亚新罕布什尔州萨拉查Nogacka,A.M .; N. Garatachea;等。粪便菌群移植到早老小鼠中可延长健康寿命和寿命。纳特中2019,25,1234–1242。 [CrossRef]21. E.Biver;贝伦鲍姆(F.瓦尔德斯(AM);德卡瓦略(I.A.);宾德尔斯(L.B.);布兰迪(M.L.) P.C. Castronovo,V .;骑士,E。 Cherubini,A .;等。肠道菌群和骨关节炎的管理:欧洲骨质疏松症,骨关节炎和肌肉骨骼疾病的临床和经济方面协会(ESCEO)的专家共识。老化水库。修订版2019,100946。[CrossRef] [PubMed]22. Shan,K .; Qu,H .;周K;王力;朱成;陈华;顾正崔建傅庚;李建等。由不同的糖-糖比高能量饮食诱导的独特肠道微生物群在糖尿病前期小鼠中具有相似的肥胖前体遗传和代谢产物特征。 mSystems 2019,4。[CrossRef] [PubMed]23. Ahadi,S .;周威; Schüssler-FiorenzaRose,S.M .;马萨诸塞州塞拉尼;肯特雷波瓦;阿维娜(M.亚什兰,M。布鲁内特(A.)斯奈德(Snyder,M)。通过深层纵向剖析揭示了个人的年龄标记和年龄型。纳特中2020,26,83–90。 [CrossRef] [PubMed]24. 哈瑟姆西(M. Beheshti,F .;哈桑(S.M.);费尔恩斯(Gern)卡扎伊(M. Avan,A.肾素血管紧张素系统抑制剂在癌细胞转移中的治疗潜力。Pathol。 Res。公关2020,216,153010。[CrossRef] [PubMed]25. 金大中; Bang,E .;阿鲁库玛河;具有。;钟国伟;朴槿惠;崔永杰;于彬钟H Senoinflammation:潜在的与年龄有关的代谢失调的主要介质。经验Gerontol。 2020,134,110891。[CrossRef]26. Castellano,J.M.对抗衰老的血液疗法。老年医学2019,65,84–89。 [CrossRef]27. Vaiserman,A .; A.Koliada; O. Lushchak。衰老轨迹的开发编程。老化水库。版本号2018,47,105–122。 [CrossRef]28. 莱文,医学博士;陆A.T. Quach,A .;陈炳辉;阿西姆(T.L.);班迪内利,S。侯L; Baccarelli,A.A .;斯图尔特,法学博士;李Y等。寿命和健康的衰老表观遗传标志。老化(纽约州阿尔巴尼),2018,10,573–591。[CrossRef]29. 史密斯(H.J.);Sharma,A .;梅尔(W.B.)代谢交流和健康老龄化:我们应该把精力集中在哪里?开发人员细胞2020,54,196–211。 [CrossRef]30. Balistreri,C.R .; Garagnani,体育;麦当娜河;Vaiserman,A .; Melino,G.成人造血系统的开发程序。老化水库。 Rev. 2019,54,100918. [CrossRef]31. 柴尔兹(B.G.); M.Gluscevic。贝克(DJ); R.M.Laberge;马克斯·D;丹南伯格(J. Van Deursen,J.M.衰老细胞:衰老疾病的新兴靶标。纳特牧师Discov。 2017,16,718–735。 [CrossRef] [PubMed]32. Z.Alteber;Sharbi-Yunger,A .; Pevsner-Fischer,M.;布拉特D.Roitman,L.; Tzehoval,E .; Elinav,E .;艾森巴赫(Eisenbach,L.)抗炎IFITM基因可通过改变免疫力和微生物群来缓解结肠炎并部分保护其免受肿瘤发生的影响。免疫细胞生物学。 2018,96,284–297。 [CrossRef] [PubMed]33. Kong,H .;新罕布什尔州钱德尔mTOR称自己为“增长草皮”,但表示过高。大声笑Cell2018,70,383–384。[CrossRef][考研]34. 北卡罗来纳州范尼尼;坎波斯Girotra,M .;Trachsel,V .; Rojas-Sutterlin,S .; Tratwal,J。拉古萨(S. Stefanidis,E .; Ryu D. P.Y.等。 NAD增强剂烟酰胺核苷可通过增加线粒体清除力有效刺激造血作用。细胞干细胞2019,24,405–418.e407。 [CrossRef]35. Ho,T.T .; Warr,M.R.; E.R.阿德尔曼;兰辛格(O.M.)弗拉什,J。E.V.Verovskaya;菲格罗亚(美国); Passegue,E.自噬可维持年轻和古老干细胞的代谢和功能。自然2017,543,205–210。 [CrossRef]36. 尚D.孙D.施昌徐建沉敏;胡X.刘华; Tu,Z.表皮生长因子受体信号传导的激活介导某些促炎性细胞因子诱导的细胞衰老。老化细胞2020,19,e13145。 [CrossRef]37. 布拉戈斯科隆尼老化:ROS或TOR。细胞周期,2008年,第7期,第3344-3354页。 [CrossRef]38. 钟H金大中;Lee E.K .;钟国伟; Chung,S .;李乙;徐老师钟建勋;郑永Y;我。;等。重新定义衰老和与年龄有关的疾病中的慢性炎症:Senoinflammation概念的建议。老年病2019,10,367–382。 [CrossRef]39. L.J.希克森; Langhi Prata,L.G.P .; Bobart,S.A .;埃文斯(Tvan)北佐治亚州Giorgadze; Hashmi,S.K .; Herrmann,S.M .;詹森,医学博士;贾强;乔丹(K.L.)等。 Senolytics减少人类衰老细胞:达沙替尼加槲皮素在糖尿病肾病患者中的临床试验的初步报告。 EBioMedicine 2019,47,446–456。 [CrossRef]40. E.西科拉;Bielak-Zmijewska,A .; Mosieniak,G.靶向正常和癌细胞衰老细胞作为Senotherapy的策略。老化水库。修订版2019,100941。[CrossRef]41. 徐敏Pirtskhalava,T .;J.N.魏根(BC) A.K. Palmer;威沃达,M.M .; Inman,C.L .;奥格罗德尼克(美国)Hachfeld,C.M.;弗雷泽(D.G.);等。 Senolytics改善身体机能并延长老年寿命。纳特中2018,24,1246–1256。 [CrossRef] [PubMed]42. J.L. Kirkland;Tchkonia,T.麻醉药:从发现到翻译。 J.实习生。中2020,288,518–536。 [CrossRef] [PubMed]43. L.P. Bharath;阿格劳瓦尔,M。G.McCambridge;尼古拉斯(D.A.)哈斯达克(Hasturk)刘建江K;刘荣;郭志;Deeney,J.;等。二甲双胍可增强自噬作用,并使线粒体功能正常化,从而减轻与衰老相关的炎症。细胞代谢。 2020年[CrossRef] [PubMed]44. E.特威迪角;威尔逊奥克利(美国); LeBeau,F.E.N .; J.F.帕索斯;曼恩(D.A.)冯·兹格里尼基(T. Jurk,D.抗炎治疗可挽救nfkb1(-/-)小鼠衰老过程中的记忆缺陷。老化细胞2020,19,e13188。 [CrossRef]45. 年轻,K。Eudy,E .;贝尔河洛伯格,M。斯特恩斯;韦尔滕哈斯(Haas)特罗布里奇造血干细胞和祖细胞老化是在中年通过局部胰岛素样生长因子1(IGF1)下降而引发的。 bioRxiv2020。[CrossRef]46. 徐伟;Lau,Z.W.X .;富洛普(T. Larbi,A。γδT细胞的衰老。 Cells 2020,9,1181。[CrossRef]47. 优素福,H。Czupalla,C.J.;李四; Chen,M.B .;伯克(A.N.);堪萨斯州Zera; Zandstra,J .;柏柏尔。;Lehallier,B .;马修(Vathur)等。老化的血液会损害海马神经前体的活性,并通过脑内皮细胞VCAM1激活小胶质细胞。纳特中2019,25,988–1000。 [CrossRef]点击:查看更多医学类文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2020-12-17 20:06:10
吸烟对立即种植牙稳定性的影响-前瞻性病例系列研究(上)
吸烟对立即种植牙稳定性的影响-前瞻性病例系列研究(结论)来源于:MDPI皮奥特·维乔万斯基1(Piotr Wychowanski)1,†,安娜·史达文斯卡2(AnnaStarzyńska)2,*,†,芭芭拉·阿利卡(BarbaraAlicja Jereczek-Fossa)3,4,伊娃·伊瓦尼卡(Ewa Iwanicka)-格热格里克(PrzemysławKosewski)1,宝琳娜·亚当斯卡(Paulina Adamska)2和雅罗斯瓦夫·沃林斯基(JarosławWoliński)61波兰华沙Binieckiego街6号,华沙医科大学口腔外科,02-097; piotrwychowanski@wychowanski.pl(P.W.); pkosewski@wum.edu.pl(P.K.)2格但斯克医科大学口腔外科系,波兰格但斯克80-211 Dbinbinki 街7; paulina.adamska@gumed.edu.pl3IRCCS,IEO欧洲肿瘤研究所放疗科,意大利米兰20-141 Ripamonti Street 435; barbara.jereczek@ieo.it米兰大学肿瘤与血液肿瘤系4,意大利米兰20-112,Festa del Perdono街7号5波兰华沙Binieckiego街6号,华沙医科大学,保守牙科系,02-097,波兰; ewa.iwanicka-grzegorek@wum.edu.pl6波兰科学院Kielanowski动物生理与营养研究所动物生理学系,波兰Jabłonna,Instytucka 3 Street,05-110; j.wolinski@ifzz.pan.pl*通讯:anna.starzynska@gumed.edu.pl;电话:+ 48-58-349-15-71†PiotrWychowański和AnnaStarzyńska同样为当前工作做出了贡献,应被视为共同第一作者。 收到:2020年11月17日接受:2020年12月19日发布时间:2020年12月22日 摘要:背景:吸烟显着影响牙周组织的生物学,并导致种植体周围疾病的风险增加。该研究的目的是调查吸烟是否会影响拔除后立即插入新鲜牙槽中的上颌牙植入物的主要和次要稳定性。方法:本研究针对164例年龄在27-71岁之间的患者进行。每天有67个人吸烟超过20支香烟,其中97人为不吸烟者。 190个即刻植入物被插入上颌骨。立即植入,同时用异种骨移植材料扩大牙槽。在后部区域,将植入物插入into骨槽中。植入物的稳定性使用插入扭矩值(ITV)和两种类型的设备进行测量:Periotest(PT)和Osstell(ISQ)。在锥形束计算机断层扫描中评估边缘骨丢失。结果:在美学领域,吸烟者在植入后6个月的PT值分别高于非吸烟者(p <0.05)。与非吸烟者相比,在植入后6个月,吸烟者的ISQ值显着降低(p = 0.0226)。与非吸烟者相比,在植入后一天(p = 0.0179),术后6个月(p = 0.0003)和术后24个月(p <0.0001),吸烟者的PT值均较高。 , 分别。吸烟者在植入当天以及植入后6个月时的ISQ值分别低于未吸烟者(p = 0.0047)(p= 0.0002)。吸烟者和不吸烟者在负重后18个月,在美学以及后方区域的边缘性骨丢失没有显着差异(p>0.05)。吸烟者的ITV测量值在美学方面(16.3对17.5 Ncm)和后方区域(16.8对17.9 Ncm)比不吸烟者低。结论:这项研究表明吸烟对上颌即刻植入物的稳定性有负面影响。与不吸烟者相比,吸烟者在上颌后部的即刻植入物的主要稳定性可能较低,这可能会使吸烟者从该区域的即刻植入物中消除。与不吸烟者相比,在吸烟者的美学和后方区域,即刻植入物的次生稳定性可能较低,这可能会鼓励在手术后6个月推迟最终冠的分娩,并且在某些吸烟者中会延长临时冠的使用时间。 关键词:立即植入;植入物稳定性抽烟;牙种植体的危险因素;周期测试奥斯特尔 1.介绍吸烟被认为是植入物假体治疗的危险因素,因为吸烟者中植入物的失效率几乎是非吸烟者的2倍[1]。最近的荟萃分析表明,吸烟的效果与剂量有关,每天吸烟20支以上的患者的植入失败风险高4倍[2]。香烟对头颈部区域伤口愈合的多方向影响,对骨整合过程的影响以及对口腔微生物组组成的影响,均会影响植入治疗的效果[3-5]。植入物的稳定性是骨整合过程中的关键因素。通过植入物表面和骨骼之间的机械力获得的原始植入物稳定性主要取决于植入物的设计和尺寸,骨骼结构和插入规程。二级植入物的稳定性在植入物骨整合后获得,并由骨组织与植入物表面之间的生物连接构成[6]。植入物的稳定性是适当骨整合的前提,因为植入物的过度微动性可能会破坏与钛螺钉接触的骨骼的形成,并可能导致植入物的纤维包封[7]。关于吸烟者中牙种植体稳定性的文献有限。先前的大多数研究报告表明,完全整合骨后,吸烟对植入物的稳定性没有显着影响[8-12]。最近的一项研究表明,吸烟者的稳定性较低[13],而另一项研究表明,吸烟者的基本稳定性可能高于不吸烟者[14]。一些研究人员发现,烟草的使用可能会改变骨整合的过程,吸烟者获得次生稳定性的过程可能会较慢[11,12]。与吸烟者中的植入物稳定性有关的现有证据很少。异类结果似乎是矛盾的。所有上述研究均评估了以常规方式在愈合的牙槽骨c中插入的植入物。如今,有许多新技术可将种植体放置在同时再生的骨骼,骨种植体中,或将拔牙后的种植体直接放置在新鲜的窝中[15-17]。迄今为止,尚无研究评估抽烟后立即插入新鲜牙套中的即时植入物在烟民中的稳定性。此外,大多数现有研究是根据采用开放式植入物愈合模型的一步法进行的。种植体插入的前后区域之间没有比较[8-11,13,14]。当前的研究集中在插入美观的即刻植入物以及上颌骨的后部区域,在该区域中所有植入物均经历了封闭的愈合过程。这项研究的目的是通过共振频率分析(RFA)客观比较吸烟和非吸烟患者上颌骨前后区域立即种植体的主要和次要稳定性(种植体插入后6和24个月)。和阻尼能力(PTV)。 2.材料和方法2.1.学习规划前瞻性病例系列研究是在波兰华沙医科大学口腔外科进行的。该研究包括164名患者。研究参与者是在2012年至2015年(进行手术)期间招募的,观察期为两年。患者被告知研究目的并获得知情同意。该研究得到华沙医科大学生物伦理委员会的批准,许可号:KB / 278/2012。 纳入研究的标准如下:没有慢性疾病,没有服用任何慢性药物,在口腔其他部位缺乏局灶性感染,正常的口腔卫生,因龋齿而掉牙的患者的健康患者问题,牙周炎,牙齿破裂和吸收。排除标准如下:中度吸烟者(少于20包年),磨牙症,咬合副功能(例如,紧握,打磨,敲打牙齿,咬住嘴唇和脸颊的粘膜,咬指甲和口香糖),牙槽缺损插座壁,前庭骨板除外。在存在慢性根尖周炎的情况下,患者符合延迟植入方案的条件,因此未纳入研究。 2.2.植入物功能使用了SPI植入物(Alpha-Bio Tec。,以色列Petah Tikwa)。 SPI是一种有源螺旋植入物,推荐用于D3和D4骨,其高螺距为2.4 mm。 SPI具有自钻,自攻和自凝结特性。具有六角连接2.5毫米,获得专利的NanoTec表面,高BIC(骨植入物触点)和平台切换。所使用的植入物的特征是略微渐缩的主体和逐渐变细的芯,即比主体更明显的特征。 2.4毫米步距的双螺纹设计与可变螺纹设计一起使用:冠状-较厚的方螺纹,中-较细的方螺纹和顶-V螺纹。螺纹深度沿顶端方向增加。同时用牛异种骨替代材料(颗粒直径为0.5–1 mm; Alpha-Bio的天然骨移植物,Alpha-BioTec。,以色列Petah Tikva)来增强肺泡。 2.3.外科手术术前常规进行锥束计算机断层扫描(CBCT)扫描,以评估植入物的未来位置并确认牙槽骨壁的完整性。记录参数,例如植入物直径和长度,插入角度,扭矩,牙槽窝深度,钻孔深度以及植入物在骨中的嵌入水平。没有评估骨的密度。外科手术由P.W.获得最佳口腔卫生后,从手术前一天开始,每12小时给予植入物,覆盖抗生素并口服口服Augmentin(875 mg阿莫西林和125 mg克拉维酸),每7小时给予一次。使用在1 mL溶液中包含40 mg盐酸阿卡替丁和0.01 mg酒石酸肾上腺素的药筒进行浸润麻醉。在美学区域,使用脱模器和镊子对牙齿的创伤最小。立即使用SPI植入物进行植入,并根据制造商的说明插入植入物。同时用直径为0.5–1mm的牛异种骨替代材料增强肺泡(以色列以色列Petah Tikva的Alpha-Bio公司的天然骨移植物,Alpha-Bio公司)。仅在牙槽的边界内进行美学区和后区的增强。前牙区缺失的牙齿通过马里兰州的粘性牙桥暂时修复。在后部区域,根据Wychowański等人描述的方法立即植入植入物。 [18]。去除冠和根部分离后不久,用脱模器和镊子进行无创伤性拔牙。提取后的牙套被彻底刮除。颊和pa的肺泡中都充满了牛异种物质(颗粒直径为0.5–1 mm,Alpha-Bio的天然骨移植物)。然后,使用直径增大的工具手动准备in上牙槽中的植入床,以使生物材料凝结并扩大植入床。根据制造商的说明插入了SPI植入物(Alpha-Bio Tec。,以色列Petah Tikva)。进行对照CBCT扫描,并使用手术骨水泥(Septo-Pack,Septodont,法国巴黎)。所有植入物均进行了6个月的闭合愈合[18]。在美观区域,插入了129个长度为11.5、13或16毫米,平台直径为3.3、3.75或4.2毫米的植入物。在后部区域,插入了61个长度为10或11.5 mm,直径为3.75或4.2的植入物。每个患者接受1或2个植入物。根据Lekholm和Zarb分类,在所有植入部位均发现了III级和IV级骨[19]。表1详细介绍了研究参与者的特征。 2.4.术后护理在手术后30分钟,如果出现疼痛,则再次给患者服用500mg布洛芬。指导患者吸烟对植入物稳定性和伤口愈合的负面影响,并指导患者术后2天避免吸烟。建议患者每天两次用含0.12%洗必泰的溶液漱口,持续2周。每年进行两次涉及去除细菌生物膜和牙结石的专业预防程序。所有植入物的上层结构均为单一单位的牙冠。我们在锆的基础上进行了陶瓷冠。我们使用Maxcem Elite自蚀刻和自粘树脂胶(Kerr Italia)在锆基台上固定牙冠。表1.研究参与者的特征。 2.5.稳定性测量使用两种设备测量了牙植入物的稳定性:Periotest Classic(德国Modautal的Medizintechnik Gulden)和Osstell Mentor(瑞典的哥德堡Osstell)。在植入当天,6个月后(在假体加载当天)和植入后24个月后再次进行稳定性测量。由于存在粘结的假体上层结构,植入后24个月未使用Osstell仪器进行稳定性测量。Osstell Mentor设备使用共振频率分析(RFA)来评估植入物的稳定性。该设备以磁性方式感应植入物的振动并测量其移动频率。结果用ISQ量表(值:从0到100 – ISQ值的增加与植入物稳定性的提高相关[20,21]。根据生产商手册和研究数据,ISQ的测量值主要有四个范围:小于60(由于植入物稳定性低,请考虑保守方法),60-65(建议分两阶段进行常规加载),65-70(一可能需要提前阶段进行加载,并且应超过70(建议一阶段立即加载)[22,23]。在颊舌和前后平面中进行了三次测量,并对结果取平均值以最小化测量误差。最终的ISQ结果是从两个平面获得的值的平均值。Periotest Classic设备的设计旨在通过测量敲击过程中监测杆尖端与被测表面之间的接触时间来识别植入物的阻尼能力和刚度。使用范围从-8到+50的PTV(周期值)单位表示结果,其中较低的PTV与植入物的较高稳定性相关[24]。通过垂直于愈合基台或义齿冠的长轴在其最顶端点应用设备的尖端进行测量。在颊舌平面中重复测量三次,并将结果取平均值。在植入当天,使用OsseoCare Pro钻孔装置Bien Air Dental测量插入扭矩值(ITV)。 2.6.边缘骨丢失测量使用CBCT评估可重复方式在种植体的中,远侧以及lat和前庭方面的边缘骨丢失情况,以评估牙槽骨[25,26]。使用Kodak3000C3D CBCT设备(柯达牙科系统,美国佐治亚州亚特兰大),使用版本为6.12.32的Dental Imaging软件,在假体加载当天(植入后6个月)和假体修复后18个月进行测量。柯达牙科系统公司,美国乔治亚州亚特兰大)。从植入物的肩部水平到最近的骨水平进行测量。扫描在两个平面上进行评估:颊-骨(在颊侧上进行一次测量,在植入物的side侧上进行一次测量)和近中距(在种植体的内侧上进行一次测量,在植入物的远端上进行一次测量)。记录的结果是四次测量中最高的。进行测量的研究者对于患者被分配到哪一组视而不见。分析材料的顺序是随机的,以补偿测量过程中学习曲线中的潜在偏差。边际骨损失测量和植入物稳定性测量都是如此。 2.7.统计分析对于两个研究组,使用d(效应量)= 0.85,使用G * Power软件版本3.1.9.4在α= 0.05且80%功效下进行单尾t检验,估计样本量。达到d值为0.85假设最小增量= 0.51,最大SD = 0.60。 SD是根据我们以前的研究获得的。一组的推荐样本量为18例。所有数据均表示为平均值和标准偏差。首先使用Kolmogorov-Smirnov检验检查数据的正态性(数据未显示)。使用未配对的t检验或Mann-Whitney检验(某些数据不是正态分布)比较两组(吸烟者和非吸烟者)之间的差异。如果可能,对显着性检验进行2-尾检,并以0.05的显着性水平进行。皮尔逊检验用于测量变量之间的相关性分析。没有丢失的数据。 3.结果3.1.患者特征这项研究针对164位患者进行:74位男性和90位女性,年龄在27至71岁之间(平均年龄49岁)。该组患者包括67名患者,他们每天至少抽烟20支,吸烟时间至少10年(超过10包年-重度吸烟者),还有97人不吸烟(从未吸烟)。经过2年的观察,植入物的存活率为100%。由于吸烟是牙周炎发展的危险因素之一,因此记录了拔牙的原因,研究组在这方面保持一致。后牙区吸烟者和非吸烟者由于牙周病而拔牙的百分比分别为8%和16%,而在美容区,由于牙周病而拔牙的比例分别为9%和9.5%。研究人群仅限于符合资格标准并在2012年至2015年期间入院的一组患者。总体上,对674例患者进行了资格评估,由于一般慢性疾病而排除了251例患者,其中3例常规服用了镇静剂药物治疗,114例口腔活动性感染,117例磨牙症/咬合副功能障碍和23例患者不能保持适当的口腔卫生。总体而言,本研究排除了508名患者,166名受试者符合纳入标准。所有参与者的随访期均为2年。没有患者失去随访,有2位患者在随访期间戒烟,因此被排除在研究之外。牙齿脱落的原因列于表2。表2.牙齿脱落的原因。3.2.审美领域植入当天,两组之间的Osstell测量值没有显着差异。植入后6个月,吸烟者的平均Osstell测量值显着降低(稳定性较差)(p=0.0226)。植入当天和植入后24个月在美学区域进行的骨灰质素测量结果显示,吸烟者与非吸烟者之间的植入物稳定性没有统计学上的显着差异(p> 0.05)。与不吸烟者相比,吸烟者在植入后6个月的平均Periotest值较高(稳定性较低),分别达到0.34(±0.12)和0.0(±0.09,p = 0.02)。吸烟后18个月,吸烟者和非吸烟者之间在美学区域的植入物周围边缘骨水平无显着差异(p = 0.94)。此外,两组之间的前庭骨板厚度保持相同。结果显示在图1和表3中。吸烟者在后方区域的ITV测量值低于不吸烟者,但未显示出统计上的显着差异,如表1所示。统计分析表明,ITV与吸烟者之间呈正相关。在所有研究组中,periotest(PT)以及ITV和ISQ均无统计学意义。图1.在上颌骨立即植入后,吸烟者和非吸烟者的美学区域中的植入物稳定性。3.3.后区在植入当天(p = 0.0047)以及植入后六个月(p = 0.0002),吸烟者后方的平均Osstell测量值均低于非吸烟者。与不吸烟者相比,在吸烟者中,植入后一天的平均围发期值较高(稳定性较低)(p = 0.0179),植入后6个月(p =0.0003)和植入后24个月(p <0.0001)。植入后18个月,后区的边缘骨丢失量在各组之间无显着差异(p = 0.49)。结果显示在图2和表4中。吸烟者的上颌后部ITV测量值比不吸烟者低,但未显示出统计学上的显着差异,如表1所示。统计分析表明,吸烟者与吸烟者之间存在正相关。在所有研究组中,ITV和PT以及ITV和ISQ均无统计学意义。 图2.在上颌骨立即植入后,吸烟者和非吸烟者后部区域的植入物稳定性。 3.4.其他分析使用Pearson检验对测量变量(Periotest值,ISQ值和骨萎缩)与其他变量(年龄,植入物直径,植入物长度,植入物成角度和插入过程中的扭矩,牙槽窝深度,钻孔深度,和植入物在骨头中的嵌入程度)。在研究的组中,与PT值或ISQ相关的唯一变量是种植体长度,种植体直径和扭矩。这些相关性与文献[24]中以前发表的数据一致。分析了随时间推移植入物稳定性的动态变化,以分析吸烟者与非吸烟者之间的潜在差异。在美学和后部区域之间没有发现显着差异(分别为p = 0.124和p= 0.188)。 点击:查看更多生物学文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息,仅代表作者个人观点,与本网无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。
2020-12-23 18:00:00
研究人员确定了促进代谢和心理健康的细菌
研究人员确定了促进代谢和心理健康的细菌通过 科克大学学院 长双歧杆菌APC1472可增加双歧杆菌的丰度,而不会影响人类肠道菌群的整体组成。在研究的开始(之前)和结束(过去12周)评估肠道菌群。研究了α(AC)和β多样性(D),以及存在的细菌属(EF)。微生物分类群是中心对数转换的(CLR)。使用Mann-Whitney U检验分析了前后的显着差异,而使用控制性别和干预前双歧杆菌丰度的ANCOVA分析了治疗差异。数据描述为箱线图或散点图,其中的点表示单个数据点,安慰剂组为n = 48,长双歧杆菌APC1472治疗组为n = 74。*表示显着效果(* p <0.05,** p <0.01)。自1980年以来,世界范围内的肥胖症人数增加了一倍以上,现在世界上大多数人口生活在超重和肥胖症致死人数少于体重不足的国家。肥胖是一项重大的健康挑战,因为它大大增加了患2型糖尿病等疾病的风险。近年来,世界范围内2型糖尿病的患病率急剧上升,约有4.62亿人受到感染,占世界人口的6.28%。在UCC的APC爱尔兰微生物组SFI研究中心的Harriet Schellekens博士及其同事确定,在实验室研究过程中,长双歧杆菌APC1472是磷灰石和代谢的重要调节剂。在一组超重或肥胖的健康人群中,这项研究表明,新型细菌菌株长双歧杆菌APC1472可以降低其空腹血糖水平,并且可以使生长激素释放肽(一种表示饥饿的激素)和应激激素皮质醇的活性水平正常化,两者的肥胖都有改变。虽然没有观察到减少人的体重增加的作用,但初步研究表明,这种细菌减少了肥胖小鼠的体重增加和脂肪库大小。研究负责人哈里特·谢勒肯斯博士说:“这项研究表明,长双歧杆菌APC1472有可能被开发为降低血糖的有价值的益生菌补充剂,这对2型糖尿病等疾病的发展至关重要。”以及该研究的联合资深作者。“这项研究是首次证明长双歧杆菌长双歧杆菌APC1472的翻译,从最初的实验室研究到临床前研究再到人类干预研究。”长期以来,人们都知道压力和肥胖之间存在联系。虽然压力可以在短期内抑制食欲,但众所周知,慢性压力会增加皮质醇,从而增加食欲。因此,短语“压力饮食”。这项研究表明,长双歧杆菌APC1472在保持我们的饥饿激素ghrelin以及降低应激激素皮质醇方面起着重要作用。该研究的资深联合作者约翰·克里安教授说:“这项研究是团队的真正努力,并提供了重要的转化证据,证明补充益生菌确实可以有效地对抗肥胖。” “此外,研究结果加强了肠道微生物组,代谢性疾病和心理健康之间联系的概念,这是一个正在研究的领域。”该研究临床部分的首席研究员蒂莫西·迪南(Timothy Dinan)教授评论说:“翻译结果扎实,皮质醇唤醒反应的调节作用,有必要进一步研究长双歧杆菌APC1472及其作为精神药物改善精神健康的潜在用途。 ”点击:查看更多生物学文章 查看其他分类文章 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息,仅代表作者个人观点,与本网无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:medicalXpress
2020-12-21 18:35:53