福昕翻译

>

太空探索

磁场弯曲的黑洞喷流
   磁场对银河星团的大规模影响尚不清楚。来自MeerKAT射电望远镜的图像表明,这样的磁场可以使从银河星团中大量黑洞喷出的粒子的喷射流弯曲。乔迪普·巴吉(Joydeep Bagchi) PDF版本超质量黑洞(SMBH)比太阳重数百万至数十亿倍,几乎在所有大质量星系的中心潜伏。在我们的宇宙邻居中,大多数银河系SMBH处于非活动状态。然而,一些非常活跃,在整个电磁波谱释放巨大的能量作为物质落入它们在重力作用下1 - 3。活跃SMBH的一些壮观表现是射电星系-射出两个强大的,高度准直的物质射流的星系,它们发射无线电波。这些无线电射流被认为是发射,聚焦和形状由磁场4 - 6,但该方法的直接证据是有限的(见go.nature.com/3xvingm)。现在,在Chibueze等人在Nature上的论文。图7报告了在银河星团中这种射流与磁场之间相互作用的观察结果。在射电星系中,许多观察到的辐射是由电子产生的,这些电子以接近光速的速度喷射到银河系SMBH附近。周围气体中的磁场使这些粒子遵循圆形路径,并在此过程中发出无线电波。这些场还将粒子聚集在一起,并将它们聚焦成两个狭窄的射流。如果不受干
2021-05-07 17:05:06
28
太阳耀斑对地球磁层的影响
    由Ingrid Fadelli,Phys.org     太阳耀斑影响整个地理空间的图示。信用:刘静。  行星地球被称为磁层的磁场系统包围。这个巨大的彗星状系统使来自太阳的带电粒子偏转,从而保护我们的星球免受有害粒子辐射的侵害,并防止太阳风(即从太阳高层大气释放的带电粒子流)侵蚀大气层。  尽管过去的研究已经收集了足够的证据证明太阳风会对地球磁层产生影响,但是人们对太阳耀斑的影响(即太阳上的电磁辐射突然爆发)知之甚少。太阳耀斑是高度爆炸性的事件,可能持续几分钟到几小时,并且可以使用X射线或光学设备检测到。  中国山东大学和美国国家大气研究中心的研究人员最近进行了一项研究,研究了太阳耀斑对地球磁层的影响。他们的论文发表在《自然物理学》上,提供了新的宝贵见解,可以为更好地了解地球空间动力学铺平道路。地球空间是最接近地球的外层空间部分,包括高层大气,电离层(即大气的电离部分)和磁层。  进行这项研究的研究人员之一刘晶教授对Phys.org表示:“磁层位于电离层上方,是离地面1000公里以上的完全电离的空间区域。” “该地区被太阳风包围,并受到地球磁场和太阳风磁场的
2020-12-18 18:58:14
49
研究:冰冷的云层能使火星早期足够温暖,以应付河流和湖泊
    由 芝加哥大学     NASA恒心漫游车在火星Jezero陨石坑内工作的插图。图片来源:NASA和JPL-Caltech。  NASA坚持不懈地坚持在火星上的观点巧妙地概括了现代空间科学的一大奥秘:今天它是一颗沙漠星球,但流浪者正坐在古老的三角洲旁。  数十年来,这种明显的矛盾一直困扰着科学家,特别是因为在火星流淌着河流的同时,它所获得的阳光不到我们今天在地球上享受的阳光的三分之一。  但是由芝加哥大学行星科学家风筝,地球物理科学助理教授,其他世界的气候专家领导的一项新研究使用计算机模型提出了一个有希望的解释:火星本来可以有一层薄薄的冰冷,引起温室效应的高空云。  凯特说:“我们的证据与我们从物理学和化学方面进行解释的能力之间存在令人尴尬的脱节。” “这一假设对缩小这一差距大有帮助。”  在科学家先前提出的多种解释中,没有一个曾奏效。例如,有人认为,一个巨大的小行星的碰撞本来可以释放出足够的动能来使行星变暖。但是其他计算表明,这种影响只会持续一两年,而古老的河流和湖泊的踪迹表明,变暖可能至少持续了数百年。  风筝和他的同事们想重新审视另一种解释:高空云,
2021-04-27 19:50:52
43
新光中的黑洞
  全球19个天文台正在仔细检查所有可能波长的巨型M 87星系的中心  2021年4月19日  巨大的银河系Messier 87中心的黑洞是研究的重点。自从第一幅图像于2019年4月发布以来,对名为M87 *的物体的兴趣一直在增加。天文学家对其周围环境特别感兴趣。这是因为巨大质量的巨大引力驱动了一个高能射流,该射流将近距离的粒子以接近光速的速度吹向太空。现在,研究人员已经发布了来自19个观测站的测量数据。这些进一步阐明了M87 *。马克斯·普朗克射电天文研究所大量参与了该项目;除其他外,它使用埃菲尔斯贝格(Effelsberg)的100米天线进行观测。    宇宙拼贴:合成图像显示了在2017年4月的EHT运动期间,M87系统在电磁频谱上的外观,这导致了黑洞的标志性第一幅图像。该图像是由地球和太空中19个不同的天文台的观测结果创建的,揭示了黑洞及其前向喷流的巨大尺度,该黑洞始于事件视界之外,并覆盖了整个银河系。  ©EHT多波长科学工作组;EHT合作;ALMA(ESO / NAOJ / NRAO);EVN;EAVN 合作; VLBA(NRAO); GMVA;哈勃太空望远镜,尼尔·盖勒斯·斯威夫特天文台;钱德拉X射线天文台;核光谱望远镜阵列;Fermi-LAT合作;HESS合作;MAGIC合作;VERITAS合作;NASA和ESA。由JC Algaba组成。  巨大的黑洞会产生喷射流,它们紧密束缚着能量和物质束。在M87 *的情况下,这些喷气机向太空延伸了至少100,000光年。这样,它们发出的辐射会覆盖整个电磁频谱的整个范围-从长波无线电范围到极短波伽马范围。对于每个黑洞,此辐射的模式都不同,因此可以深入了解其属性。  但是,模式会随着时间而变化,从而使观察变得困难。在使用事件地平线望远镜(EHT)进行测量的过程中,该望远镜提供了M87 *的第一张图像,研究人员通过与地面和太空中世界上许多最强大的望远镜进行协调,对这种变化进行了补偿。这种“多频天文学”捕获了整个电磁频谱中的辐射。这是迄今为止针对超大质量黑洞及其射流进行的最广泛的同时测量活动。  Stefanie Komossa说:“这个独特的数据集对于理解我们宇宙邻居中最巨大的黑洞之一附近的物理条件至关重要。” 波恩的马克思普朗克射电天文学研究所的研究人员是EHT的辅助观测小组成员,也是“天体物理学快报”最新出版物的主要作者之一。“无线电数据与其他波长(如近红外,可见光,X射线和伽马射线)的近实时测量值的结合,为海底附近发生的物理过程的详细图片提供了巨大的数据量。黑洞和喷气式飞机的发射区域”,科莫萨的同事托马斯·克里希鲍姆(Thomas p. Krichbaum)补充说,他也是波恩研究所的研究员,也是EHT科学理事会的成员。  在他们目前的研究中,科学家们发布了这个庞大的数据集,并使所有感兴趣的团体都可以使用。麦吉尔大学(McGill University)的达里尔·哈加德(Daryl Haggard)说:“数个小组已经在研究他们的模型是否与这些广泛的观察结果相匹配”。他很高兴整个社区现在正在帮助人们更好地理解黑洞与其喷头之间的紧密联系。初步结果表明,M87 *附近物质产生的电磁辐射量是有史以来最低的。这一事实为研究黑洞提供了理想的条件,尤其是事件视界附近的区域,在这些区域中,信号在输出时遇到的障碍较少。 研究人员还计划改进对爱因斯坦广义相对论的检验。这样的实验需要极强的引力场,例如超大质量黑洞产生的引力场。但是,天文学家尚不确切知道围绕M87 *旋转并在射流中发射的物质是什么样的。决定发射光的物质的物理性质也仍然是个谜。 阿姆斯特丹大学的Sera Markoff说:“了解粒子加速度是我们对EHT图像和射流的解释的核心”。“因为这架射流设法将黑洞释放的能量传输到比宿主星系更大的距离,就像一条巨型电力电缆一样”。现在收集的数据将帮助研究人员计算所传输的能量,从而计算黑洞射流对其周围环境的影响。   该出版物与当前的EHT观测运行吻合,该观测运行再次使用全球望远镜网络。本周,天文学家计划花六个晚上检查银河系M87以及人马座A *,这是银河系中心的超大质量黑洞。  “在这次观察运动中,地球和太空中的许多望远镜与EHT合作,共同共同并同时研究了整个电磁波谱中M87 *的特性,” Event Horizon Telescope创始主席安东·曾索斯(Anton Zensus)说。马克斯·普朗克射电天文学研究所所长。因此,可以更详细地研究磁场,宇宙射线,射流结构,发射和吸收过程以及广义相对论的作用。点击查看:更多有关太空探索文章使用文档翻译功能使用图片翻译功能使用专业译文翻译 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mpg
2021-04-20 20:18:19
66
维珍银河公司推出最新一代宇宙飞船
Virgin Galactic rolls out latest generation of spaceship维珍银河公司推出最新一代宇宙飞船by Susan Montoya Bryan由Susan Montoya BryanIn this undated photo provided by Virgin Galactic is the VSS Imagine, the first SpaceShip III in the Virgin Galactic Fleet in Mojave, Calif. Virgin Galactic rolled out its newest spaceship Tuesday, March 30, 2021, as the company looks to resume test flights in the coming months at its headquarters in the New Mexico desert. Company officials said it will likely be summer before
2021-03-31 17:01:25
127
天文学家在M87的黑洞边缘的磁场进行了成像
事件Horizon Telescope(EHT)协作,他们在2019年发布的黑洞中发布的第一个图像,今天是Messier 87(M87)Galaxy中心的大量对象的新视图:它如何看待偏振光。这是第一次天文学家能够测量极化,磁场的特征,这靠近黑洞的边缘。该图像显示了M87中的黑洞的偏振视图。线标记极化的方向,这与黑洞阴影周围的磁场有关。信贷:EHT协作当今,制作了一个黑洞的第一个镜像的活动地平线望远镜(EHT)协作,今天揭示了Messier 87(M87)Galaxy中心的大量物体的新视图:它如何看待偏振光。这是第一次天文学家能够测量极化,磁场的特征,这靠近黑洞的边缘。观察结果是解释M87 Galaxy如何偏离5500万光年,能够从其核心发射能量喷气机的关键。“我们现在看到了下一个关键的证据来理解黑洞周围磁场的行为,以及在这个非常紧凑的空间区域的活动如何能够驱动强大的喷流,这些喷流远远延伸到星系之外,”EHT偏振工作组的协调人、拉德布德大学的助理教授莫妮卡·莫斯西布罗德斯卡说在荷兰。2019年4月10日,科学家们释放了一个黑洞的第一张照片,揭示了一个带有深色中央区域的亮环结构
2021-03-25 17:05:49
124
位于太阳中的危险高能粒子的来源
由 伦敦大学学院日冕质量抛射物(CME)于2012年8月31日爆发进入太空。图为太阳动力天文台拍摄的171和304埃波长的混合版本。图片来源:NASA / GSFC / SDOUCL和美国弗吉尼亚州乔治·梅森大学的研究人员首次发现了太阳在其外部大气层的暴风雨中高速释放的潜在有害太阳粒子的来源。这些粒子带有很高的电荷,如果它们到达地球的大气层,可能会破坏卫星和电子基础设施,并对宇航员和飞机上的人员造成辐射风险。1859年,在所谓的卡灵顿事件中,一场大太阳风暴导致整个欧洲和美国的电报系统出现故障。在现代世界如此依赖电子基础设施的情况下,潜在的危害更大。为了最大程度地减少这种危险,科学家正在寻求了解这些粒子流是如何产生的,以便他们可以更好地预测它们何时会影响地球。在这项发表在《科学进展》上的新研究中,研究人员分析了朝向地球的太阳高能粒子的组成,发现它们的“指纹”与位于太阳日冕下部,接近太阳大气中部的等离子体具有相同的“指纹”,色球层。合著者Stephanie Yardley博士(MSSL加州大学马勒德分校太空科学实验室)说:“在我们的研究中,我们首次观察到太阳高能粒子确切地
2021-03-04 19:13:26
124
银河系中的扭曲与银河系碰撞有关
弗吉尼亚大学 Russ Bahorsky 银河系的图形表示,显示其弯曲的外边缘。信用:程新伦当我们大多数人想象银河系的形状时,银河系包含我们自己的太阳和成千上万个其他恒星,我们想到的是一个中心质量,周围环绕着围绕它盘旋的扁平恒星。但是,天文学家知道,圆盘结构不是对称的,而是扭曲的,更像是浅顶软呢帽的边缘,并且扭曲的边缘不断绕着银河系的外缘移动。弗吉尼亚大学学院和艺术与科学研究生院的天文学研究生郑新伦说:“如果您曾经见过观众在体育场内挥手致意,那将非常类似于这个概念。” “在每一位观众站起来,然后在正确的时间和正确的顺序,因为它是绕着体育场创造了一波坐了下来。这正是星在我们的银河系在做什么。只有在这种情况下,波在绕着银河系的圆盘旋转时,银河系的圆盘也在绕着银河系的中心旋转。从体育迷的比喻来看,体育场本身也在旋转。”导致该翘曲发生的原因一直是辩论的主题。一些研究人员认为,这种现象是银河系本身不稳定的结果,而另一些研究人员则断言,这是遥远过去与另一个星系碰撞的残余。最近研究天体运动的郑和他的同事,UVA博士后研究员Borja Anguiano和学院天文学系教授Steve
2021-02-08 19:11:19
272
天文学家从宇宙最强磁铁之一发现奇异且前所未有的活动
Astronomers spot bizarre, never-before-seen activity from one of the strongest magnets in the universe天文学家从宇宙中最强的磁铁之一发现奇异的,前所未有的活动by ARC Centre of Excellence for Gravitational Wave DiscoveryARC引力波发现卓越中心Artist’s impression of the active magnetar Swift J1818.0-1607. Credit: Carl Knox, OzGrav.艺术家对主动式磁星雨燕J1818.0-1607的印象。图片来源:卡尔·诺克斯(OlGrav)。Astronomers from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) and CSIRO have just observed bizarre, never-seen-before behavio
2021-02-04 18:41:20
191
常在火星上发现的矿物发现于南极冰层深处
Mineral often found on Mars discovered deep in Antarctic ice常在火星上发现的矿物发现于南极冰层深处by Bob Yirka , Phys.org鲍勃·伊尔卡(Bob Yirka),Phys.org The morphology of mineral grains in deep TALDICE investigated through SEM. Credit: Nature Communications (2021). DOI: 10.1038/s41467-020-20705-z通过扫描电镜(SEM)研究了深层TALDICE中矿物晶粒的形态。图片来源:Nature Communications(2021)。 DOI:10.1038 / s41467-020-20705-z An international team of researchers has found evidence of the mineral jarosite in ice cores extracted from Antarctica. In their paper published in the journal Nature Communications, the researchers describe how the discovery came about and why they believe it could bolster theories regarding the presence of the same mineral on the surface of Mars.一个国际研究人员小组发现了从南极洲提取的冰芯中的矿物黄钾铁矾的证据。在发表于《自然通讯》杂志上的论文中,研究人员描述了这一发现是如何产生的,以及为什么他们相信该发现可以支持有关火星表面存在相同矿物的理论。 Jarosite is very rarely found on Earth—it is generally seen in mining waste that has been exposed to air and rain. The researchers with this new effort were not looking for it in their ice cores—they were focused on minerals in deep ice cores that might help to better understand ice age cycles. But when they came across the yellow- brown mineral, their interest was piqued. X-ray absorption testing and electron microscopy showed it be jarosite.黄铁矿在地球上很少见-通常在暴露于空气和雨水的采矿废物中看到。做出这项新努力的研究人员并没有在冰芯中寻找它,而是专注于深冰芯中的矿物质,这些矿物质可能有助于更好地了解冰龄周期。但是,当他们遇到黄褐色的矿物时,他们的兴趣激起了。 X射线吸收测试和电子显微镜显示它是黄钾铁矾。 The researchers suggest the mineral formed in ice pockets that also held small amounts of dust. Under the ice, they had eroded, the researchers noted. The finding brought to mind another site where jarosite is found—the surface of Mars. It was found there by the Opportunity rover back in 2004 and has been found to be abundant. Finding jarosite on Mars created a lot of excitement at NASA and around the world, because prior research had shown that water must be present for jarosite formation.研究人员认为,冰袋中形成的矿物质还含有少量的灰尘。研究人员指出,它们在冰下侵蚀了。这一发现使我想到了另一个发现黄钾铁矾的地点-火星表面。早在2004年,Opportunity流浪者就在那发现了它,并且发现它很丰富。在火星上发现黄钾铁矾在NASA和全世界引起了极大的兴趣,因为先前的研究表明,形成黄钾铁矾必须存在水。 The discovery of jarosite on Mars led scientists to come up with theories to explain how it might have originated. Some suggested it might have been left behind as salty water evaporated. Others suggested that Mars might have been covered by a massive ice blanket billons of years ago. They further suggested that jarosite could have formed in ice pockets. That would have been possible, they noted, if the ice blanket grew slowly with dust blowing onto it. At the time the theory was formulated, it was difficult to test because it had never been found to form that way anywhere else, including Earth. 在火星上发现的黄钾铁矾导致科学家提出了一些理论来解释其起源。一些人认为,咸水蒸发后可能会留下来。其他人则认为,火星可能在数年前被巨大的冰盖巨石覆盖。他们进一步认为,黄钾铁矾可能在冰袋中形成。他们指出,如果冰盖缓慢地生长并且上面吹着灰尘,那将是可能的。在提出该理论时,很难进行测试,因为从未发现它能以其他方式形成,包括地球。 Now that jarosite has been found deep in Antarctic ice, the latter theory will likely become the most prominent. The researchers note that the theory still has one glitch—the ice in Antarctica contains very small amounts of jarosite—on Mars, the mineral is found in large slabs. The researchers suggest that the difference might be explained by the huge amounts of dust on the Martian surface.现在已经在南极冰层深处发现了黄钾铁矾,后一种理论可能会成为最突出的理论。研究人员指出,该理论仍然存在一个小问题-南极洲的冰中含有很少量的黄钾铁矾-在火星上,这种矿物存在于大平板中。研究人员认为,这种差异可能是由火星表面上大量的尘埃所解释的。点击:查看更多太空探索文章 查看更多生物学文章 使用PDF文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-01 19:20:46
187
宇宙电磁炸弹为γ射线爆发的起源提供了照明
在我们的宇宙后院中已经看到了被称为巨大磁耀斑的天体爆发,但是它们如此明亮以至于使观测仪器蒙蔽。最后发现了更远的耀斑,揭示了这些排放物的细节。克里斯托弗·汤普森在二十世纪,许多天文学研究都是关于无常的研究。探测从无线电波到γ射线在内的整个电磁频谱的望远镜揭示了各种令人震惊的简短且经常令人迷惑的灾难。我们对许多类型的宇宙爆炸(例如超新星和γ射线爆发)的理解受到局限,因为我们无法看到它们的内部工作原理,也由于它们在我们自己的银河系中稀有。在这个问题上和其他在天文宇宙为研究耀斑外γ射线源的河外种群奠定了基础,这些γ射线源的亲属可以在附近找到,并且已经在静态中得到了很好的研究。这些信号源也可能连接到快速无线电脉冲串4-天文学上最热门的话题。 被称为磁星的恒星残骸以与其他任何类型的恒星根本不同的方式发光。它们似乎像普通中子星,例如射电脉冲星,其密度甚至大于原子核的密度。但是它们的磁场比大多数脉冲星(达到10 11特斯拉)5强1000倍。它们辐射的主要燃料不是核聚变(例如太阳),也不是释放剩余的热能(例如在像太阳恒星的残余物形成的白矮星中),甚至不是恒星自旋(例如在太阳系中)。脉冲星)。相反,支持磁场的强大电流的衰减会持续释放X射线和γ射线。即使处于静止状态,磁星的发光强度也可以是太阳5的100倍。它们最强的爆发亮度大约是一万亿倍,但值得注意的是,与过去十年中逐渐释放出的能量相比,它们可以在不到一秒钟的时间内释放出更多的能量。这些巨大的耀斑已经检测到的银河系内的几十倍,但其接近使得它们眩目璀璨星载X射线和γ射线望远镜。Svinkin等。1和Roberts等。图2显示了这些银河事件与2020年4月15日检测到的γ射线脉冲之间的密切对应关系,Svinkin等人( 1988年)。三角化到附近的星系NGC 253(也称为雕刻家星系;图1)使用称为“行星际网络”的仪器的组合。从这个距离看,两篇论文的作者能够确定γ射线光谱和耀斑的时间分布的精细细节-事实证明这是先前报道的河外耀斑的近照。在γ射线耀斑图中可以看到两个截然不同的分量:一个快速且快速变化的分量,持续几千分之一秒;速度较慢的物体呈指数衰减,速度则慢十倍。慢速组件所承载的能量与快速组件相当或更大。答案可能与以下事实有关:尽管磁星的表面比其他恒星5更热,但它们基本上是低温物体。中子星的外层包含重的,富含中子的核,并在恒星坍塌后立即冻结成固体,从而触发中子星的形成8。与地球的外层相比,这种地壳具有特殊的性质。深层地壳中的温度已大大降低,低于制造它的核材料的熔点。而且,这种材料是极好的电导体,可以有效地将其与扭曲的磁场相结合-磁场和地壳必须一起运动,要么在静止时缓慢运动,要么在爆发时更快运动。精确地如何触发电磁耀斑仍在研究中。与太阳的高温,磁化气氛相反,没有涡旋对流运动使嵌入的磁场主动变形。但是,在一个巨大的耀斑中,我们可以肯定地壳发生了非常大的破坏-想象一下加利福尼亚和纽约发生互换的构造事件。在4月15日事件及其同级中看到的较慢的分量与地壳变形松弛产生的相一致。这种破坏会扭曲了磁星的外部磁场,驾驶不稳定电流比流经日冕更强的十亿倍9,10。另一种后果可能是一个磁性回路的喷射,类似于大太阳耀斑11,12。磁干扰应足够强,以产生密集的流出的电子,正电子和γ射线气体。这种导电气体与磁场的相互作用被认为会产生Svinkin等人观察到的亚秒级γ射线光谱。以及Roberts及其同事。在其研究3中,费米LAT合作为磁火耀斑打开了新的窗口。它报告低能量γ射线中的其他两篇论文中描述1,2随后19秒后,发出了持续几分钟的高能γ射线。这是首次检测到来自磁晕的延迟高能γ射线。拟议的解释包括在耀斑释放出快速移动的(相对论)离子云—当喷发撞击NGC 253的气态介质时,高能γ射线在冲击波中产生。但是,目前尚不清楚电磁耀斑是否包含大量离子。由几乎纯净的电磁辐射组成的脉冲也将驱动冲击波,并且可能首先与相对论性的围绕电磁子的粒子星云相互作用。总结一下,这三篇论文报告了一个γ射线耀斑,它提供了有关中子星内部和周围磁应力如何松弛的直接线索。测得的能量比碰撞中子星产生的大多数γ射线爆发所产生的能量少1,000倍甚至更多,尽管持续时间是相似的。迄今为止,对γ射线爆发建模的理论家们尚未就产生事件标志性γ射线发射的过程达成共识。理解与电磁耀斑有关的异同将有助于缩小可能性。持续监测附近星系中的磁星也将限制快速无线电脉冲爆发源的模型。 点击:查看更多太空探索文章 查看文更多文献研究文章 使用免费图片翻译 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
2021-01-30 17:15:46
170
科学家发现黑洞可能会达到“惊人的大”尺寸
Scientists find black holes could reach 'stupendously large' sizes科学家发现黑洞可能会达到“惊人的大”尺寸by Queen Mary, University of London伦敦大学玛丽皇后学院 This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and s
2021-01-24 17:00:31
198
我们可以利用黑洞中的能量吗?
Could we harness energy from black holes?我们可以利用黑洞中的能量吗?by Carla Cantor, Columbia University哥伦比亚大学卡拉·坎特 Plasma close to the event horizon about to be devoured by a rotating black hole. Credit: Classical And Quantum Gravity, 2015. Reproduced By Permission of IOP Publishing接近事件视界的等离子体将被旋转的黑洞吞噬。图片来源:Classic and Quantum Gravity,2015年。A remarkable prediction of Einstein's theory of general relativity—the theory that connects space, time, and gravity—is that rotating black holes have enormous amounts of energy available to be tapped.爱因斯坦的广义相对论(将空间,时间和引力联系起来的理论)的一个杰出预言是,旋转的黑洞有大量可利用的能量。For the last 50 years, scientists have tried to come up with methods to unleash this power. Nobel physicist Roger Penrose theorized that a particle disintegration could draw energy from a black hole; Stephen Hawking proposed that black holes could release energy through quantum mechanical emission; while Roger Blandford and Roman Znajek suggested electromagnetic torque as a main agent of energy extraction.在过去的50年中,科学家们试图想出释放这种力量的方法。诺贝尔物理学家罗杰·彭罗斯(Roger Penrose)提出了一种理论,即粒子崩解可能会从黑洞中吸收能量。史蒂芬·霍金(Stephen Hawking)提出黑洞可以通过量子机械发射来释放能量。而罗杰·布兰福德(Roger Blandford)和罗曼·扎纳克(Roman Znajek)则建议将电磁转矩作为能量提取的主要手段。Now, in a study published in the journal Physical Review D, physicists Luca Comisso from Columbia University and Felipe Asenjo from Universidad Adolfo Ibanez in Chile, found a new way to extract energy from black holes by breaking and rejoining magnetic field lines near the event horizon, the point from which nothing, not even light, can escape the black hole's gravitational pull.现在,在《物理评论D》(Physical Review D)杂志上发表的一项研究中,哥伦比亚大学的物理学家Luca Comisso和智利阿道夫·伊巴内斯大学的Felipe Asenjo找到了一种新的方法,可以通过打破并重新结合事件视界附近的磁场线来从黑洞中提取能量。 ,一点,甚至没有光都无法逃离黑洞的引力。"Black holes are commonly surrounded by a hot 'soup' of plasma particles that carry a magnetic field," said Luca Comisso, research scientist at Columbia University and first author on the study.哥伦比亚大学研究科学家,该研究的第一作者卢卡·科米索(Luca Comisso)表示:“黑洞通常被带有磁场的等离子颗粒的热'汤'包围着。”"Our theory shows that when magnetic field lines disconnect and reconnect, in just the right way, they can accelerate plasma particles to negative energies and large amounts of black hole energy can be extracted."“我们的理论表明,当磁场线以正确的方式断开和重新连接时,它们可以将等离子体粒子加速为负能量,并且可以提取出大量的黑洞能量。”This finding could allow astronomers to better estimate the spin of black holes, drive black hole energy emissions, and might even provide a source of energy for the needs of an advanced civilization, Comisso said.Comisso说,这一发现可以使天文学家更好地估计黑洞的自旋,驱动黑洞的能量排放,甚至可以为先进文明的需求提供能量来源。Comisso and Asenjo built their theory on the premise that reconnecting magnetic fields accelerates plasma particles in two different directions. One plasma flow is pushed against the black hole's spin, while the other is propelled in the spin's direction and can escape the clutches of the black hole, which releases power if the plasma swallowed by the black hole has negative energy.Comisso和Asenjo建立理论的前提是重新连接磁场会在两个不同的方向上加速等离子体粒子。一种等离子流被推向黑洞的自旋,而另一种则沿自旋的方向推进,可以逃离黑洞的离合器,如果黑洞吞下的等离子具有负能量,则释放动力。"It is like a person could lose weight by eating candy with negative calories," said Comisso, who explained that essentially a black hole loses energy by eating negative- energy particles. "This might sound weird," he said, "but it can happen in a region called the ergosphere, where the spacetime continuum rotates so fast that every object spins in the same direction as the black hole."Comisso说:“就像一个人通过吃负热量的糖果可以减轻体重一样。”他解释说,黑洞本质上是通过吃负能量粒子而失去能量的。他说:“这听起来可能很奇怪,但是它可能发生在一个称为“遍及地球”的区域,在该区域中,时空连续体旋转得如此之快,以至于每个物体都以与黑洞相同的方向旋转。”Inside the ergosphere, magnetic reconnection is so extreme that the plasma particles are accelerated to velocities approaching the speed of light.在人体工圈内部,磁性重新连接非常极端,以致等离子体粒子被加速到接近光速的速度。Asenjo, professor of physics at the Universidad Adolfo Ibáñez and coauthor on the study, explained that the high relative velocity between captured and escaping plasma streams is what allows the proposed process to extract massive amounts of energy from the black hole.阿道夫·伊巴涅斯大学的物理学教授,该研究的合著者阿森霍解释说,被捕获和逃逸的等离子体流之间的高相对速度是使拟议的过程能够从黑洞中提取大量能量的原因。"We calculated that the process of plasma energization can reach an efficiency of 150 percent, much higher than any power plant operating on Earth," Asenjo said. "Achieving an efficiency greater than 100 percent is possible because black holes leak energy, which is given away for free to the plasma escaping from the black hole."“我们计算出,等离子体通电过程的效率可以达到150%,远高于地球上运行的任何发电厂,” Asenjo说。 “由于黑洞会泄漏能量,因此有可能获得大于100%的效率,而能量会免费释放给从黑洞逸出的等离子体。”The process of energy extraction envisioned by Comisso and Asenjo might be already operating in a large number of black holes. That may be what is driving black hole flares—powerful bursts of radiation that can be detected from Earth.Comisso和Asenjo设想的能量提取过程可能已经在大量黑洞中运行。这可能是造成黑洞耀斑的原因-可以从地球探测到的强大的辐射爆发。"Our increased knowledge of how magnetic reconnection occurs in the vicinity of the black hole might be crucial for guiding our interpretation of current and future“我们对黑洞附近如何发生磁重新连接的了解增加,对于指导我们对当前和未来的解释至关重要。telescope observations of black holes, such as the ones by the Event Horizon Telescope," Asenjo said.望远镜观测黑洞,例如事件地平线望远镜的黑洞。”While it may sound like the stuff of science fiction, mining energy from black holes could be the answer to our future power needs.虽然这听起来像是科幻小说,但从黑洞中开采能量可能会满足我们未来的电力需求。"Thousands or millions of years from now, humanity might be able to survive around a black hole without harnessing energy from stars," Comisso said. "It is essentially a technological problem. If we look at the physics, there is nothing that prevents it."科米索说:“从现在起的数千年或数百万年中,人类可能能够在不利用恒星能量的情况下在黑洞附近生存。” “这本质上是一个技术问题。如果我们看物理学,没有什么可以阻止它的。”The study, Magnetic reconnection as a mechanism for energy extraction from rotating black holes, was funded by the National Science Foundation's Windows on the Universe initiative, NASA, and Chile's National Fund for Scientific and Technological Development.这项名为“磁重连接作为从旋转黑洞中提取能量的机制的研究”,是由美国国家科学基金会的“宇宙之窗”计划,美国国家航空航天局和智利国家科学和技术发展基金会资助的。Vyacheslav (Slava) Lukin, a program director at NSF, said the Foundation aims to catalyzes new theoretical efforts based on frontier observations at facilities such as the EHT, bringing together theoretical physics and observational astronomy under one roof.NSF的项目主管Vyacheslav(Slava)Lukin表示,基金会的目标是基于EHT等设施的前沿观测,促进新的理论工作,将理论物理学和观测天文学融合在一起。"We look forward to the potential translation of seemingly esoteric studies of black hole astrophysics into the practical realm," Lukin said.卢金说:“我们期待着将黑洞天体物理学似乎深奥的研究潜在地转化为实际领域。”"The ideas and concepts discussed in this work are truly fascinating," said Vyacheslav (Slava) Lukin, a program director at the National Science Foundation. He said NSF aims to catalyze new theoretical efforts based on frontier observations, bringing together theoretical physics and observational astronomy under one roof.国家科学基金会项目负责人维亚切斯拉夫(Slava)卢金说:“这项工作中讨论的想法和概念确实令人着迷。”他说,国家科学基金会的目的是基于前沿观测,促进新的理论工作,将理论物理学和观测天文学融合在一起。"We look forward to the potential translation of seemingly esoteric studies of black hole astrophysics into the practical realm," he added.他补充说:“我们期待将似乎深奥的黑洞天体物理学研究转化为实际领域。”点击:查看更多双语译文文章 查看更多物理学文章 使用双语译文翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-01-17 18:05:44
185