福昕翻译

>

翻译学堂

>

血液循环因子能否发挥作用并延缓您的生物衰老?(上)

血液循环因子能否发挥作用并延缓您的生物衰老?(上)

生物学 论文文献 在线翻译
343
2020-12-17 19:47:55


血液循环因子能否发挥作用并延缓您的生物衰老?(中)

血液循环因子能否发挥作用并延缓您的生物衰老?(结论)

Natalia Rybtsova1,Tatiana Berezina 2,Alexander Kagansky 3,*和Stanislav Rybtsov 1,*

1 英国爱丁堡大学EH16 4UU,爱丁堡大学再生与修复研究所再生医学中心; rybnat@yahoo.com

2 莫斯科国立心理学大学极端心理学科学基础系

教育,127051莫斯科,俄罗斯; tanberez@list.ru

3 远东联邦大学生物医学学院基因组和再生医学中心,俄罗斯符拉迪沃斯托克690922

* 通信:kagasha@yahoo.com(A.K.); srybtsov@ed.ac.uk(S.R.);电话:+ 44-1316519540(S.R.)

 


收到:2020年11月12日;接受:2020年12月14日;发布时间:2020年12月15日

 

摘要:根据世界卫生组织的资料,在未来30年中,发达国家60岁以上的人口将增加一倍,这将迫使退休年龄进一步提高,并增加医疗保健系统的负担。因此,存在一个严重的问题,即保持健康和延长积极的工作寿命,以及实施早期监测和预防早衰和与年龄相关的疾病,以避免早期残疾。传统的生物年龄指标并不总是能提供信息,通常需要进行广泛而昂贵的分析。血液因子研究是一种简单易行的评估个人健康状况的方法,并以新的客观标准补充了人的生物学年龄的传统指标。随着年龄的增长,生长发育,组织再生和修复的过程逐渐减少。它们逐渐被增强的分解代谢,炎性细胞活性和胰岛素抵抗所取代。支持炎症环的衰老细胞数量增加;自噬和线粒体的细胞清除速度减慢,从而导致线粒体和细胞损伤以及功能障碍。对循环血液因子的监测不仅反映了这些过程,而且还可以建议采取医学干预措施,以预防或减缓与年龄有关的疾病的发展。我们回顾了最近出版物中讨论的与年龄有关的血液因素,以及为健康和积极长寿而减缓衰老的方法。

 

关键词:老化代谢失调;血液因素炎;衰老;老化的生物标志物;生物时代

 




1. 介绍 

由于个体的生活方式和环境因素的随机影响,以及决定个体发育的遗传和表观遗传因素,个体的生物学年龄可能与日历年龄大不相同[1]。通常使用生物的形态,生理和功能特征来估计生物年龄,并将其与相同日历年龄的其他个体的平均生物年龄进行比较[2-5]。特别是,对血管系统状态的研究通常用于评估生物学年龄[6]。决定生物年龄的衰老率还取决于各种因素,包括饮食和不良习惯[7,8]。由于与社会动荡和个人问题有关的压力,个体的衰老会加速[2,9]。对个体生物学年龄和衰老标记的鉴定进行评估,对于预测寿命,评估与年龄有关的疾病的风险以及为快速发展的抗衰老研究制定出可保护性的可保护性参数[10-14]是必不可少的。 

 

在发达国家和发展中国家退休年龄逐渐增加的情况下,这对于延长现代社会的就业年龄和积极的寿命尤为重要。因此,对大数据的分析,包括与生物衰老相关的各种遗传,代谢和医学指标,表明饮食限制[15,16],体重减轻,运动[17,18],甚至是肠道菌群的改善。 [19-22]可以逆转衰老标志物的上升,并预防包括肥胖症,糖尿病,癌症等在内的病理状况,显示出有望增加全球人口的平均平均活跃寿命[23,24]。

衰老是多种疾病(例如免疫缺陷,心血管疾病,糖尿病,癌症和各种神经系统疾病)的主要潜在危险因素。尽管数十年来在研究和临床投资上做出了巨大的努力,但仍没有针对这些疾病中许多疾病的有效治疗方法,并且衰老降低了治疗方法的有效性[13,25,26]。

我们认为有两种方法可以延长积极的健康寿命:防止过早衰老和防止老年性疾病的发展。了解衰老和与年龄有关的疾病的原因对于实施这些策略至关重要。衰老是所有人体组织逐渐退化的复杂过程。出生后,在我们的成长和发展过程中,形成了身体的新结构和组织。在成年期,这种从头开始的形成和生长停止了,逐渐转向维持身体功能和各种系统的平衡。随着年龄的增长,身体系统的失衡加剧,导致对器官和组织失去控制,分解代谢和枯萎[27]。

尽管尚未发现衰老的完整遗传程序,但科学家们已经鉴定出许多影响衰老和寿命的基因和过程[10,14,27–30]。衰老的主要机制之一是衰老细胞在所有器官和组织中的积累[25,31]。感染或占优势的肠道微生物群引起的炎症会耗尽免疫系统[19,20,32]。促炎细胞因子水平升高会引起局部组织损伤。受损细胞和组织的修复是一个非常耗能和耗资源的过程[33]。生长因子和激素信号显着激活脂质代谢,蛋白质合成和增殖,因此,细胞中“秩序”的维持被迫取消。自噬和线粒体被抑制,去除自由基的酶的分泌减少。总而言之,所有这些都会导致线粒体受损和暂时性细胞功能障碍的积累[33,34]。再生后,电池清洁和维护重新开始,并且电池功能恢复正常。这尤其是干细胞的特征,干细胞在扩增和分化过程中负责受损组织的再生和恢复[35]。但是在慢性炎症中,细胞不易于清洗(自噬和线粒体吞噬),而容易衰老[36]。这些代谢增加的衰老细胞获得了所谓的衰老相关的分泌表型:它们开始释放大量的促炎因子[37]。出现病理循环-炎症随着年龄增长而增加,因此衰老或耗尽的细胞数量增加。由于再生干细胞的加速老化或/和枯竭,再生受到阻碍。炎症反应的增强和衰老细胞的积累是相互依赖的过程,通常被称为“ senoinflammation” [25,38]。当使用能消除衰老细胞的抗衰老药物[39-42]和抗炎治疗[43,44]时,成功地减缓了与年龄相关的变化,从而证实了这一概念的准确性。

炎症性衰老还影响造血干细胞和祖细胞(HSPC)[45-49]。

其特点是与年龄相关的造血功能和免疫功能紊乱,年轻细胞数量减少,循环中衰老细胞数量增加,吞噬细胞减少,从而能够从积累的转化细胞和陈旧细胞中清除组织。免疫系统的这种衰老会降低免疫监视的水平,从而导致出现慢性感染和恶性增生性疾病[50]。造血细胞不仅具有从衰老细胞和感染中清除组织的免疫功能,而且还可以向循环血液中分泌大量促炎,抗炎和再生因子[51]。血液向所有器官和组织输送营养,氧气,激素和生长因子。此外,它还将订单发送给整个身体并控制免疫系统[52]。与年龄相关的血液循环因子变化反映了衰老的过程和机制。这些因素在医学上的实现将其传递到血液中,从而可以将信号传递至调节和监测衰老的体内系统[27]。

在本文中,我们概述了有关最重要的衰老报告者的最新研究。这些是代谢,激素和炎症因子,可提供生物学年龄的客观标准。此外,其中一些因素直接影响老化过程。在本文中,我们将仅关注血浆中可测量的因素。

2. 血浆生物化学和血管动力学的年龄相关变化

无论是在动物实验还是在人体实验中,许多关于放松条件下的血流速度的研究都没有发现其随年龄的增长而显着降低。但是,在压力下,年轻的动脉相比年长的动脉会大大扩张。此外,在年长的动物中,控制血管张力和收缩的感觉神经元数量也明显减少[53]。毛细血管的数量随着年龄的增长,横截面的变化以及局部血栓形成的可能性的增加而减少[54]。显然,即使老年人的血小板数量略有下降,血纤蛋白原含量的增加也会影响血液的凝结[55,56]。血浆中纤维蛋白原浓度随年龄的升高既反映了系统性炎症的升级,又反映了血管内皮的年龄相关变化(表1)[57]。


1.血管疾病,代谢产物,脂质和氧化还原剂是与年龄有关的疾病的危险因素及其对寿命的影响。


血管疾病.png



匆忙的机体功能障碍的风险随年龄增长而增加。例如,传统上在临床实践中使用的血尿素氮与肌酐之比(BUN /肌酐)也与急性心力衰竭相关[58]。随着年龄的增长逐渐增加的另一个可靠的衰老标志是白蛋白/肌酐比值,称为尿微量白蛋白。微量白蛋白含量很高与糖尿病和高血压有关,可能引发肾功能不全和衰竭[59]。

众所周知,血钙水平也会随着年龄的增长而增加,特别是与肾功能不全相关时。也已经表明,在老年时,钙水平的突然下降或升高会导致较高的过早死亡风险[57,60]。

血细胞参数随年龄的增长而降低,例如总淋巴细胞计数,红细胞计数,血红蛋白和血细胞比容,通常用于评估健康状况[56]。众所周知,男性(约15.5至12.3 g / dL)和女性(约13.5至11.5 g / dL)的年龄在50至90岁之间,血红蛋白水平都会下降[61]。然而,这种相关性更确切地描述了随着年龄的增长,病理性贫血的发生率增加。有健康的衰老个体具有稳定的血红蛋白水平[57]。

新的分析方法使人们能够识别随年龄变化的各种血浆附加成分。它们在衰老中的作用以及使用它们评估生物学年龄的可能性仍有待阐明。

2.1. 血脂

脂质的总含量及其种类(脂质组)会随着年龄的增长而衰减,可以被视为健康脂质代谢的年龄相关预测指标。血浆中脂质体的质谱分析表明,某些特定脂质的浓度与年龄有关,而与体重指数无关;它们包括胆固醇,鞘磷脂和含二十二碳六烯酸的磷脂[62]。不同类别的胆固醇和炎症因子浓度的年龄依赖性增加与心血管疾病的风险和寿命的缩短相关[63-65]。炎症和衰老过程中血浆中含三酰基甘油的多不饱和脂肪酸(PUFA)积累与寿命负相关,而血浆中鞘磷脂浓度与寿命正相关[66]。

最近的一份报告确定了一组与年龄相关疾病组合风险相关的生物标志物。对44,168人的代谢谱监测发现了10种与10年全因死亡率相关的生物标志物。它们包括脂蛋白,脂肪酸和糖酵解代谢产物,体液平衡标志物和炎症因子[67]。另一项研究揭示了与全脂类血浆浓度相关的遗传标记,以及与心血管疾病风险相关的脂修饰[68]。

2.2. NAD+/ NADH指数

NAD +及其前体水平的年龄依赖性降低会导致线粒体功能障碍和代谢紊乱的累积。NAD+的组成水平取决于NAD合成与消耗NAD +的酶活性之间的平衡。 NAD +对于炎症过程中造血细胞的免疫功能至关重要。与衰老相关的所有过程,包括炎症,局部缺血,代谢失衡,变性细胞状况,均会抑制NAD +的产生;因此,每20年NAD+的浓度会降低两次[69,70]。 NAD +的生产也依赖饮食。高蛋白摄入会导致血浆NAD +水平降低[71]。最近的研究发现CD38-NADase是NAD +的主要消费者,并且是与年龄相关的NAD +下降的媒介[72]。 CD38在大量免疫细胞上表达,包括B细胞,T细胞,NK细胞和一些髓样细胞。此外,CD38在大量淋巴白血病细胞中大量表达。考虑到NAD +功能在所有代谢过程中的重要性,动物实验表明,通过化学抑制来阻断CD38依赖的NAD +摄入可以改善小鼠的健康和寿命[73]。

 

2.3. 赞美

活性氧(ROS)会引起氧化性细胞损伤。 ROS随年龄增长而增加;降低ROS水平可减少年龄相关的功能衰退。例如,最近开发了一种方法,用于通过其衍生物的数量-活性氧代谢物(D-ROM)以及通过指示巯基氧化还原回收系统状态的硫醇蛋白基团的浓度来评估ROS的量。总硫醇水平(TTL)。这项技术可以发现与年龄相关的变化与D-ROM和TTL标记的积累之间的相关性。 D-ROM水平和TTL浓度还与心血管疾病,肿瘤疾病和糖尿病的过早死亡率相关[74,75]。

基于氧化还原的平衡机制也基于S-亚磺酰化蛋白Cys-SSH向Cys-SSOH(半胱氨酸过硫代亚硫酸,氧化形式)的转变。Cys-SSH被广泛认为是一种细胞氧化还原传感器。蛋白质的亚磺酰基半胱氨酸(Cys-SSH)可以被ROS反向氧化,从而降低自由基的水平[76,77]。

由于Nrf2表达(核因子红系2 p45衍生的因子2)的减少,对消除自由基和其他毒素的遗传控制随年龄的增长而降低[78]。反过来,Nrf2控制抗氧化剂蛋白,解毒酶,药物转运蛋白和许多细胞保护蛋白的表达。此外,Nrf2通过响应增强剂(SOD是ROS的重要中和剂)直接掌握超氧化物歧化酶(SOD)的表达[78-80]。 Nrf2还可以通过直接调节抗氧化酶功能来保护线粒体,通过上调Sirtuin(SIRT)来增加自噬水平,并通过抑制NF-kB来减轻炎症[81]。

2.4. 硫化氢

可溶于血浆的硫化氢(H2S)在生物系统中作为氧化还原传感器也起着基本作用[82]。产生H2S的CSE(胱硫醚γ-裂合酶)的发现表明,该分子不仅是环境毒素。这有助于了解H2S在动态平衡,免疫细胞,组织和器官功能管理中的作用[83]。在无脊椎动物的实验中,硫化氢/半胱氨酸过硫化物(H2S / Cys-SSH)生产者的基因缺失缩短了动物的寿命,而促进H2S则大大增加了寿命。血浆中H2S浓度随年龄的下降可能是与年龄有关的变化的客观指标[82,84,85]。 H2S和上述Cys-SSH可以通过荧光和Dimedone开关标签方法轻松测量[82,86]。

最近,已经表明H 2S参与伴侣功能的调节。控制H2S产生的酶CSE/CTH / CGL(胱硫醚-γ裂解酶),CBS(胱硫醚-β-合酶)和MST(3-巯基丙酮酸硫转移酶)与HSP22的抗逆性,老化和应力依赖性调节有关, HSP70和HSF1 [87,88]。伴侣蛋白在适应性应激中起重要作用,并且可以直接调节与寿命相关的Foxo3基因的表达(Forkhead box O3)[89]。产生H2S的酶缺乏会导致高血压,而在动物研究中施用化学H2S供体可降低血压并防止器官损伤[90]。 MST是一种涉及骨骼矿化的气体递质H2S酶。最近有文献报道其在预防骨关节炎发展过程中软骨钙化中的作用[91]。

此外,还发现氧化应激,Cys-SSOH的剥夺或抑制作用伴随着CGL(胱硫醚γ-裂解酶基因)表达的增加,导致H2S的产生与mTORC1保持负平衡(与蛋白质合成有关)。 H2S的增加是限制热量摄入饮食有效性的关键指标[92]。血浆中的H2S浓度也能够调节炎症反应,具有抗氧化特性并调节血管舒张作用[93]。血浆中H2S的浓度会随着年龄的增长而逐渐降低,因此,可以将其作为生物学年龄标记[85]。 H2S供体化学物质硫代硫酸钠已被成功用于临床试验,以治疗晚期肾脏疾病患者的钙减少症[94]。不过,由于硫代硫酸盐的副作用,有必要寻找新的硫化氢供体[90,94]。维持血液中的H2S平衡可能是开发抗保护性疗法的有前途的策略。

2.5. β2-微球蛋白

作为主要组织相容性复合物(MHC)一部分的β2-微球蛋白(β2M)存在于血小板,淋巴细胞和单核细胞的表面。 β2M的表达受干扰素和促炎细胞因子的调节,其功能对于免疫监视至关重要。它稳定MHC以建立抗原呈递。血小板衍生的β2M是单核细胞促炎性分化的介质,并可能在癌变过程中或作为心肌保护剂发挥分子伴侣的作用[95]。由于炎症反应,血浆中会发生β2M的蓄积,但通过肾脏过滤可积极消除。随着年龄的增长,肾功能下降会导致血浆β2M量逐渐增加,并引起与年龄有关的认知功能和神经再生过程的损害[95-97]。

血液中β2M的存在会引起淀粉样原纤维的形成和沉积(淀粉样变性),这是许多病理状况的原因。这个过程可能与慢性炎症和衰老有关,可能是阿尔茨海默氏病,帕金森氏病和II型糖尿病的基础[98]。淀粉样变性在长期透析后也会发生,因为现代系统无法释放大分子,例如β2M。这就是为什么该分子被认为是肾脏滤过效率的标志[99],全因死亡率以及其他健康下降和疾病风险病例的预测因素的原因[100]。还证明了血清β2M水平与老年人的虚弱(慢,无力,低体力活动,疲惫和萎缩)之间的关联[101,102]。因此,β2M被认为是几种与年龄有关的炎症性疾病的预测指标。

3. 与衰老相关的循环激素和生长因子

血浆成分的浓度随年龄而变化。其中一些是自然衰老的指标,同时可能直接影响,增加或减少衰老的速度。通过共生模型,将年幼和老年的动物通过外科手术缝合在一起,可以测试血浆成分如何影响健康和衰老率(图1)[103,104]。在共生生物模型中,在骨骼肌,心脏,肝脏和中枢神经系统中观察到改善老动物健康指标的作用,以及在年轻供体小鼠中这些器官和组织的同时退化[105-108]。

此外,将年幼小鼠的血浆注入年老小鼠中会增加衰老海马中环状AMP反应元件结合蛋白(CREB)的表达。这导致神经元的可塑性增强和认知功能改善[109]。

最近对幼小和年老的共生动物表达谱的研究确定了与血管系统再生相关的基因复合物,包括改善的线粒体功能和对氧化应激的反应[52]。

从血浆中分离出活跃的年轻化因子是一项重要的策略,因为共生体本身在临床上是无法翻译的:从伦理上说,年轻人到老年人的输血是不可接受的,并且充满多种副作用[110-113]。此外,在功能上与衰老相关的关键因素是用于生物年龄估算的优秀生物标记。本章讨论了最明显的与年龄相关的因素(图1,表2)。

3.1. TGF-β超家族

转化生长因子β(TGF-β)超家族包括几个分子,例如骨形态发生蛋白(BMP),生长分化因子(GDF),激活素等。它们调节胚胎中的组织形态发生,并参与成人的几个生物学过程,例如细胞静止,凋亡,分化,增殖和细胞迁移,尤其在造血功能的调节中起关键作用。它们的异常表达与许多疾病和衰老的发病机制有关[114-116]。

 


共生生物小鼠模型.png

 

1.共生生物小鼠模型:循环因子对生物衰老的相互影响。在年轻的生物体中,生长和再生,胰岛素敏感性高,细胞清洁(自噬,线粒体吞噬)水平提高的过程胜过衰老细胞的积累,胰岛素抵抗,肌肉和其他细胞的分解代谢以及慢性炎症的过程。 (发炎)特定于旧生物。粉色箭头表示主要存在于年幼动物血液中的因素。蓝色箭头显示过程和因素-生物年龄增长的指标。显示了具有外科手术连接的血管系统和常见血液循环的共生模型,在该模型中,成年小鼠和成年小鼠之间交换了因子和细胞。该模型可以评估血液因素对生物衰老的影响。使用共生模型检测了图中所示的几个因素(第3章中的附加说明)。 sVEGF和sICAM1表示蛋白质的可溶性形式。 “ EGF +炎症”显示高水平的EGF信号传导与高水平的炎症因子结合,导致内皮细胞衰老。文本中解释了分泌蛋白的所有名称。我们根据https://www.genecards.org使用基因名称和蛋白质缩写。

 

2.与衰老有关的生长因子,激素和炎性因子的动力学。

血液循环因子.png

与衰老有关的生长因子,激素和炎性因子的动力学.png

TGF-β因子的典型功能是通过c-Myc(增殖调节因子)和白介素受体的转录下调以及诱导细胞休眠的细胞周期蛋白依赖性激酶的抑制剂来抑制生长。因此,TGF-β在许多过程中作为抗炎因子起作用。在衰老期间,TGF-β表达升高。令人惊讶的是,随着年龄的增长,这种升高导致神经源性海马海马,骨骼肌的肌源性海马中促炎性利基细胞的扩增。通过这种方式,TGF-β增加了炎症,而不是其抑制免疫应答的典型作用。Alk5抑制剂阻断TGF-β信号传导可降低β2-微球蛋白水平,并增强小鼠的神经元和肌肉再生[110,117]。

激活素与特定的II型受体A(ActRIIA)或B(ActRIIB)结合(分别针对激活素A或B)。这种结合刺激了细胞质蛋白Smad2和Smad3的磷酸化,从而将信号转导传递到细胞核中[118]。除激活素的发育作用外,它们还与炎症有关[119]。

其他TGF-β超家族成员,生长分化因子8和11(GDF8或肌生长抑制素,

和GDF11)以及激活素,还通过SMAD2 / 3向核传递信号,以调节多种过程:神经发生,肾脏和内分泌胰腺发育,肌肉和心脏再生。 GDF11蛋白序列与GDF8 90%相同,但是它们作为ALK4 / ActRII信号的配体发挥不同的作用[118,120,121]。

血浆中的几种TGF-β超家族成员,包括GDF8(肌生长抑制素),GDF11和激活素A被认为是衰老的指标,并讨论了它们在衰老过程中的可能参与[118,122]。此外,GDF8(肌生长抑制素)在减缓许多动物物种的产后肌肉生长中起着重要作用。此外,GDF8的突变导致衰老小鼠的心脏功能改善[123]和脂肪代谢正常化[124]。因此,随着年龄的增长其水平会导致骨骼肌和平滑肌的退化[125]。GDF8激活素的天然拮抗剂是卵泡抑素。在肌肉萎缩症小鼠模型中静脉给予卵泡抑素可改善肌肉再生[126]。

GDF8的缺失产生了超肌肉表型,而GDF11的缺失在胚胎中是致命的,并且与包括血管和肌肉萎缩在内的广泛发育缺陷有关。 IGF11还参与海马神经元和血管再生期间血管细胞的发育和粘附[127,128]。皮肤细胞中GDF11的缺失会影响真皮基质成分的产生,并与皮肤老化有关[129]。与这些研究一致的是,老年人血浆中GDF11浓度的降低与老年性肌营养不良有关[130]。静脉内给药时,GDF11能够逆转与年龄有关的心脏肥大[122,131,132],并能防止内皮损伤[128]。但是,长期的

 

全身注射GDF11可引起恶病质(虚弱和体重减轻)[133]。另外,高浓度的GDF11可能导致红细胞成熟的最后阶段延迟并导致贫血[134]。尽管关于GDF11对预期寿命和恢复活力的影响的报道相互矛盾,但血液中GDF8和GDF11的水平可以用作心血管风险的预测性生物标志物。血浆GDF11含量降低也与健康受损,神经变性和死亡风险相关[118,122,128]。

近来,激活素A已显示会影响灵长类动物肌肉质量的形成[135,136]。激活素A以及GDF8和GDF11的主要受体是激活素IIB受体(ACVR2B /ActRII),它通过SMAD2 / 3传递信号至负责组织分解代谢的关键基因的启动子。在血浆中检测到的ActRII信号报告基因之一是卵泡抑素样3蛋白(FSTL3)。血液中FSTL3的水平与年龄有关[118]。 FSTL3已被提议作为心血管系统加速衰老和心脏功能障碍风险的指标。有趣的是,FSTL3抑制了ActRII受体配体,因此GDF8和GDF11的总库随着年龄的增长而减少。但是,激活素A的水平增加。激活素A可能与FSTL3的抑制作用无关。随着年龄的增长,肌肉和心肌的退化与血浆中激活素A含量的增加有关[137,138]。此外,ActRII的完全阻滞可保护心肌免受小鼠诱发的梗塞[139]。 ActRII信号传导不仅对心肌有多种作用,而且对血细胞也有多种作用。 FSTL3在红细胞的产生[140]和血统的克隆形成前体的粘附[141]中起着重要作用,这可能与造血过程中与年龄相关的变化有关。

ActRII受体的分解代谢功能取决于激活该信号通路的配体类型。与衰老相关的ActRII的另一个重要的TGF-β超家族配体是骨形态发生蛋白(BMP9)[121]。 BMP9的阻滞导致发育过程中的出血,表明其在维持血管内皮结构中的作用[142]。 BMP9通过另外的内皮特异性衔接子受体内皮糖蛋白(ENG)与ActRII相互作用[143]。 ENG衰减到SMAD3的BMP9信号。代谢综合征和肝硬化期间BMP9水平降低,而ENG水平升高[144,145]。人们对BMP9信号的兴趣日益增长,也促使人们对BMP9/ ENG在组织纤维化中的负作用进行讨论[121]。另外,BMP9参与脂质稳态和葡萄糖代谢的调节。这种激素可以减少肝中糖原的积累。通过提高胰岛素的合成和增加组织的胰岛素敏感性,BMP9增强了肌肉组织的葡萄糖消耗并促进了肌肉组织的转变。

白色脂肪组织到棕色脂肪组织[115]。ActRII信号通路抑制剂的种类繁多,以及其复杂的转录后成熟调控,使人们对它们在衰老中的作用及其在检测生物学年龄中的用途的理解模糊了[131]。

总之,所有这些研究都可能建议监测TGFβ,BMP9,GDF11,GDF8,激活素A和FSTL3,作为评估与年龄相关的健康状况和衰老率的预测平台。

 点击:免费使用英文翻译

免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。

 来源于:mdpi

 


福昕翻译转换文章内容来源:https://fanyi.pdf365.cn/help/67
上一篇: 研究人员确定了促进代谢和心理健康的细菌
下一篇: 血液循环因子能否发挥作用并延缓您的生物衰老?(中)