福昕翻译

>

PDF文档翻译

怎么操作文档翻译,可简单翻译word、 pdf翻译吗?
有的人偏食有的人偏科,这都是很正常的,一件事总有人擅长有些人不擅长,阅读外语文档时如果外语水平不好,就比较麻烦了,文档内容多,如果分段复制翻译会影响整篇文章的准确度,怎么操作文档翻译?有简单的办法吗?今日小编给大家整了一份翻译教程,可以简单翻译word、pdf文档翻译。今天咱们不是用百度搜索翻译,以福昕翻译为例子,福昕翻译—文档翻译—上传文件支持PDF翻译、Word翻译、PPT翻译、Excel翻译常用文档都可以翻译。文档上传后,选择翻译需求和翻译语言,有默认信息确认下就可以点击【开始翻译】,文档进入快速翻译。在线查看译文:翻译后点击右侧就可以在线查看译文,可以选择逐页对比翻译原文译文,左右对比翻译,下图是双语译文,分为上下原文译文段落对比阅读。下载译文:译文下载可选择保留语文样式和排版的“高保真”译文如下图,还有双语译文,两种模式的预览效果都不错。文档翻译简单翻译教程就分享到这里了, 打开福昕翻译文档功能,上传文档然后点击开始翻译,立马就能查看译文,不管是PDF翻译、Word翻译、PPT翻译、还是Excel翻译,常用文档翻译都可以得到解决,有文档需求的小伙伴一定要去试试,毕竟试试翻译不花钱没损失,别以为福昕翻译只能解决文档翻译,还有免费好用的图片翻译和专业议员翻译,一个网站解决所有翻译需求!
2021-05-14 15:04:06
17
联合光疗和低氧激活化疗有利于抗肿瘤免疫反应
  本文发表在以下DovePress期刊上:国际纳米医学杂志  背景:肿瘤转移是导致全球大多数癌症死亡的原因,缺乏治疗。  目的:本研究的目的是消除肿瘤并控制肿瘤转移的发展。  方法:在这里,我们演示了一个智能的纳米平台,其中2- [2-[2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2h-吲哚-2 -亚丙基]亚乙基]-1-环己烯-1-基]乙烯基] -3,3-二甲基-1-丙基碘化碘鎓(IR780)和替拉帕明(TPZ)共同负载在聚(ε-己内酯)-聚(乙烯)中乙二醇(PEG-PCL)形成通用的纳米颗粒(PEG-PCL-IR780-TPZ NP)。  结果:系统的智能反映在触发和控制的工程中。特别地,PEG-PCL不仅延长了IR780和TPZ的循环时间,而且还通过增强渗透性和保留(EPR)效应促进了纳米药物在肿瘤中的蓄积。而且,由IR780产生的活性氧(ROS)受到808 nm激光辐照引起了货物释放。同时,IR780作为靶向线粒体的光疗剂,加重了肿瘤的低氧微环境,并激活了TPZ,以完成缺氧激活的化学疗法。最重要的是,IR780能够在协同治疗期间触发免疫原性细胞死亡(ICD)。 ICD生物标记物作为“危险信号”加速树突状细胞(DCs)的成熟,并随后激活了毒性T淋巴细胞。  结论:最终,光疗和缺氧激活的化学疗法相结合刺激的抗肿瘤免疫反应彻底改变了目前的癌症治疗方法,显着抑制了肿瘤转移,为临床应用提供了广阔的前景。  关键词:光疗,缺氧激活化疗,IR780,替拉帕明,抗肿瘤免疫应答,转移  1. 介绍:  抗肿瘤策略方面的优势取得了长足进步,由于肿瘤的复发和转移,肿瘤的死亡率仍然很高。[1-8]免疫治疗由于其控制远处转移性肿瘤的功能而备受关注[9]。 –11特别是,检查点抑制剂和嵌合抗原受体T细胞免疫疗法被认为是治疗癌症的关键工具。12–20然而,由于严重的副作用,高成本和高成本,这两种策略的应用受到限制。个体差异较大。21-24更严重的是,一些肿瘤组织,尤其是三阴性乳腺癌(TNBC),经过检查点抑制剂治疗后的免疫应答相对较低,这主要归因于“冷”免疫微环境。4因此,探索实现“热”免疫微环境并触发免疫应答作为免疫治疗的前奏的新颖而有效的方法。尤为关键。  据报道,免疫原性细胞死亡(ICD)是一种刺激性的情况,可将“冷”免疫微环境变为“热”免疫微环境。25-27光疗作为微创治疗策略已显着应用于肿瘤消融。28-35最近的一份报告描述了光疗在激光照射下诱导了ICD。36除了光疗之外,还证实了其他一些ICD诱导剂,包括化学疗法和电离辐射。23,37,38但是,一些不可忍受的局限性,例如低药物输送,可忽略货物放行和单一治疗方案极大地限制了ICD的结果。高度期望智能通过对肿瘤反应性药物纳米载体的工程设计,光疗和化学疗法的合理组合能够协同作用,针对有限的ICD功效提供积极的突破。但是,几乎没有什么工作可以达到理想的高效率。  在这项研究中,我们将PEG-PCL-IR780-TPZ NPs(图1)定制设计为一种健壮的纳米载体系统,可高效递送光疗剂(IR780)和化疗前药(TPZ)。 IR780在808 nm激光照射下产生的1O2(ROS之一)在磷脂双层受损后从PEG-PCL-IR780-TPZNPs中释放IR780和TPZ,并同时释放。39-41IR780作为由于线粒体的光疗敏感性,靶向线粒体的光疗剂能够提高治疗效果。42,43Yang等人报道,TPZ作为一种可缺氧激活的前药,对正常细胞几乎没有影响,但具有选择性对低氧细胞有高毒性。44-46他们还证明了IR780光动力疗法过程中会加剧肿瘤缺氧的微环境,这会通过单电子还原反应刺激TPZ产生有毒的氧化自由基物质(羟基自由基和苯并三嗪基自由基)47。激活的化学疗法通过产生大量内源性增效剂,包括高运动性第1盒(HMGB1),三磷酸腺苷(ATP)和钙网蛋白(CRT),引发ICD介导的适应性免疫反应。48-50此外,内源性增效剂被识别树突状细胞(DC)并促进DC成熟。51因此,成熟的DC募集幼稚T细胞以激活细胞毒性T淋巴细胞(CTL),包括簇分化(CD)8 + T,CD4+T和NK细胞。 ,然后消融原发肿瘤并控制肿瘤转移。48,52,53总之,我们的研究提供了三个重要发现。首先,我们公开了一种具有纳米功能的触发和控制的纳米车辆。其次,我们强调了PEG-PCL-IR780-TPZ NP的光疗可加重肿瘤的缺氧并引发缺氧激活的化学疗法。第三,我们揭示了联合光疗和缺氧激活的化学疗法刺激的抗肿瘤免疫反应可显着抑制肿瘤转移。    图1示意图显示了用于肿瘤消融和转移抑制的免疫疗法。激光照射后,由聚乙二醇-聚己内酯-2- [2- [2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2H] -吲哚-2-亚丙基)亚乙基] -1-环烯-1-基]-乙烯基] -3,3-二甲基-1-丙基-1H-碘化碘-替拉帕明纳米颗粒(PEG-PCL-IR780-TPZ NPs)-基于协同的光疗和缺氧激活的化学疗法。损伤相关分子模式(DAMP)包括三磷酸腺苷(ATP),高运动性第1族框(HMGB1)和钙网蛋白(CRT)作为内源性增强剂产生,并随后促进树突状细胞(DC)成熟。最终,幼稚的T细胞被成熟的DCs募集,并产生包括CD8 + T,CD4 + T在内的细胞毒性T淋巴细胞(CTLs),并诱导自然杀伤(NK)细胞,在消融原发肿瘤和控制肿瘤转移中起着不可或缺的作用。  2. 材料和方法  2.1. 材料  替拉帕明(TPZ),ε-己内酯,2- [2- [2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2h-吲哚-2-亚烷基)亚乙基]-亚乙基]- 1-环己烯-1-基]乙烯基] -3,3-二甲基-1-丙基-碘化亚碘鎓(IR780碘化物),2,2,6,6-四甲基哌啶-(TEMP)二甘醇和N,N'-二甲基甲酰胺购自Sigma-Aldrich(中国上海)。(3-(4,5)-二甲基噻唑偶氮(-z-y1)-3,5-二苯基四氮唑鎓)MTT分析,4',6-二mid基-2-苯基吲哚(DAPI),钙黄绿素-AM /碘化丙啶(PI )双重染色测定,Dulbecco改良的Eagle培养基(DMEM),无血清RPMI-1640培养基和胎牛血清(FBS)从KeyGen Bio-tech Co.,Ltd.(中国南京)获得。白介素12(IL-12)ELISA试剂盒,异硫氰酸荧光素(FITC)结合的抗小鼠CD11c抗体,抗钙网蛋白(CRT)抗体,FITC结合的抗小鼠CD4抗体,P-藻红蛋白(PE)结合的抗小鼠CD83抗体,与藻蓝蛋白(APC)结合的抗小鼠CD8抗体,与Peridinin-叶绿素-蛋白质复合物(PerCP)结合的抗小鼠CD86抗体,与PE结合的抗小鼠CD69抗体和发光ATP检测法都是由Abcam(中国上海)带来。 HMGB1 ELISA试剂盒,抗小鼠CD31抗体和抗小鼠CD8抗体购自Bioss(中国北京)。抗兔二抗-Alexa Fluor 488和其他荧光抗体来自Beyotime生物技术研究所(中国南京)。所有化学试剂均未进一步纯化。将小鼠源性乳腺癌细胞系4T1细胞培养在生长培养基中,该培养基从上海生物科学研究所(中国上海)的细胞库中获得。所有无特定病原体(SPF)的小鼠均购自扬州大学比较医学中心(中国扬州),并饲养在无病原体的环境中。实验中使用的是去离子水,该水是从Milli-Q(Millipore,18.2MΩcm-1)。  PEG-PCL-IR780-TPZ纳米粒子的制备  如前所述进行聚(ε-己内酯)-聚乙二醇(PEG-PCL)的合成程序。54使用水包油型乳液溶剂扩散法制备PEG-PCL-IR780-TPZ纳米粒子(NP)。裂解法。54,55 Briey,将IR780(2.5mg)和TPZ(2.5mg)溶解在10 mL二氯甲烷中,并将PEG-PCL溶解在10 mL去离子水中。将它们混合并在超声作用下自组装。超声处理1小时后,成功合成了PEG-PCL-IR 780-TPZ NP,并通过离心沉淀。随后,将样品用去离子水洗涤三次,并在4℃下保存。  PEG-PCL-IR780-TPZ NP的表征  PEG-PCL NP和PEG-PCL的形态和大小-IR780-TPZ NPs使用透射电子显微镜(TEM,JEOL-200CX,日本东京)直接捕获。通过Zetasizer Nano-ZS90(英国,DLS)测量每种颗粒的流体动力学直径。使用UV-3600分光光度计(Shimadzu,Tokyo,Japan)确定UV-vis吸收光谱,以确保亲水性小分子成功地包封在PEG-PCL NP中。通过紫外可见分光光度计测定的IR780和TPZ的标准曲线分别计算了IR780和TPZ的载药量和包封效率。载药量和封装量的计算公式如下:    另外,将PEG-PCL-IR780-TPZ NPs在37°C的胎牛血清(FBS)或磷酸盐缓冲液(PBS)中溶解8天,以研究其稳定性。随后,使用DLS仪器监测流体力学直径。 808纳米二极管激光器(LEO光子公司)用于研究光疗。激光装置的纤维直径为200μm,借助光学透镜可以将光束直径扩大到11.4 mm,从而暴露出整个肿瘤区域。 TEMP自旋俘获电子顺磁共振(EPR)技术用于进行单重态氧的检测。 PEG-PCL-IR780-TPZ NP和ICG对Na2-ADPA的分解速率为  在不同的照射时间记录,并通过Na2-ADPA在378 nm处的吸收强度变化进行定量。参考一些报告计算了1O2量子产率。56-58  体外红外(IR)成像  PEG-PCL-IR780-TPZ NPs的体外光热特性是使用热成像相机(Fotric 226,中国上海)在808 nm激光辐照下以密度递减(1.5 W / cm2,1.0 W /平方厘米,0.5瓦/平方厘米,0.25瓦/平方厘米)。之后,PEG-PCL在1.0瓦/平方厘米的激光功率密度下,将6孔板中具有不同IR780浓度(0、50μg/ mL和200μg/ mL)的-IR780-TPZNPs溶液进一步照射10分钟。  体外ROS /缺氧检测  使用ROS-ID®缺氧/氧化应激检测试剂盒(ENZO,南京,中国)评估ROS /缺氧效果。首先,收获4T1细胞并将其接种在含有补充有10%FBS的DMEM的6孔板中12小时。孵育后添加IR780(200μg/ mL,根据IR780),PEG-PCL-IR780(200μg/ mL,根据IR780)和PEG-PCL-IR780-TPZ(200μg/ mL,根据IR780)。随后,将细胞暴露于808 nm激光(1 W / cm2)的照射下5分钟。然后在黑暗中将缺氧检测溶液再添加到6孔板中20分钟。最后,将细胞用PBS洗涤3次,然后使用IX73荧光显微镜(日本奥林巴斯)捕获图像。  MTT测定  使用MTT分析评估了PEG-PCL-IR780-TPZ NPs的体外细胞毒性。首先,将4T1细胞培养在96孔板中,每孔2×103个细胞,然后在37°C和5%CO2的含10%FBS的DMEM中孵育。孵育12小时后,将细胞与不同浓度的PEG-PCL-IR780NP,PEG-PCL-TPZ NP和PEG-PCL-IR780-TPZ孵育NP12小时。这些组或者用激光(1.0W /cm2)辐照5分钟或者不辐照5分钟。之后,将MTT溶液(5µL)加入96孔板中。再过4小时后,弃去上清液,加入150µL二甲基亚砜(DMSO)溶解晶体。最后,用酶标仪(Tecan,200 Pro NanoQuant,瑞士)测量光密度(OD)。  钙黄绿素-AM / PI双重染色测定  钙黄绿素-AM / PI双重染色用于评估细胞活力。简而言之,将4T1细胞在37°C和5%CO2的条件下接种到6孔板中12小时。将细胞与不同浓度的PEG-PCL-IR780NP和PEG-PCL-IR780-TPZ NP孵育12小时,然后暴露于808 nm激光照射(1.0 W / cm2)5分钟或不暴露5分钟。进行钙黄绿素-AM / PI共染色,并使用共聚焦激光扫描显微镜(CLSM,Olympus,FV1000,东京,日本)捕获活细胞和死细胞的荧光图像。数据由ImageJ分析。  体外ICD生物标志物分析  为了评估免疫原性细胞死亡(ICD)生物标志物的体外水平,将4T1细胞与IR780(200μg/ mL,根据IR780),PEG-PCL-IR780 NP(200μg/ mL,根据IR780)共培养以及PEG-PCL-IR780- TPZ NP(200μg/ mL,根据IR780)。孵育12小时后,是否进行808 nm激光照射5分钟(激光的功率密度为1 W / cm2)。再过3小时后,收集上清液以通过ELISA和化学发光测定试剂盒(发光ATP检测测定法(Abcam))检测HMGB1和/或ATP的释放。接下来,将4T1细胞用PBS洗涤两次,并用低聚甲醛(4%)固定15分钟。 PBS清洗后,牛血清白蛋白(BSA,6%w / v,孵育:60分钟)用于阻断抗体的非特异性结合。然后将4T1细胞与一抗(抗CRT抗体,稀释度1:100)在4°C孵育过夜。然后,将细胞用PBS洗涤3次,并与Alexa Fluor 488偶联的二抗(稀释度为1:100)在室温下于室温孵育60分钟。最后,洗涤细胞并用DAPI溶液染色。使用CLSM捕获荧光图像。  直流成熟度评估  为了研究DC的成熟,根据报道的方法从小鼠骨髓中收集了骨髓DC(BMDC)。59首先,将健康的BALB / c小鼠(5周龄)处死,并收集骨髓细胞。特定的无病原体状况。添加红细胞裂解液以纯化BMDC。之后,将细胞在补充有10%白细胞介素4(IL-4,10 ng /mL)和粒细胞-巨噬细胞集落刺激因子(GM-CSF,10 ng / mL)的无血清RPMI-1640培养基中培养。 37°C,5%的二氧化碳。孵育7天后,获得了纯化的BMDC。同时,将细胞与IR780(200μg/ mL,根据IR780),PEG-PCL-IR780NP(200μg/ mL,根据IR780)和PEG-PCL-IR780-TPZNP(200μg/ mL)孵育。至IR780)。使用808 nm激光照射(1 W / cm2,5分钟)持续24小时以触发DC成熟。用FITC偶联的抗小鼠CD11c抗体,PE偶联的抗小鼠CD83抗体,PerCP偶联的抗小鼠CD86抗体对细胞染色,然后使用流式细胞仪进行评估。同时,使用IL-12 ELISA试剂盒作为试剂方案评估上清液中的IL-12效应子水平。  异种移植小鼠的肿瘤模型  健康的雌性BALB / c小鼠(5周龄)是从扬州大学比较医学中心购买的,该小鼠生活在无特定病原体的环境中。动物实验获得南京大学护理委员会的批准(包括动物护理和使用指南以及小鼠安乐死的指南,协议编号:20180212-013)。皮下注射每只小鼠总共5×106 4T1细胞。使用游标卡尺每三天监测一次肿瘤体积。小鼠在右腋下接种4T1细胞后三天,通过尾部静脉注射第二批4T1细胞(5×106),以建立人工模拟转移模型。  体内红外成像  使用红外(IR)热像仪评估光热效应,以确保体内有效治疗。向患有4T1肿瘤的简陋小鼠静脉注射PBS或PEG-PCL-IR780-TPZ NP(1.5 mg / kg,根据IR780)。 12小时后,用808 nm激光以1 W/ cm2的功率密度照射4T1荷瘤小鼠10分钟。使用FotricAnalyzIR软件分析了所有热图。  体内抗肿瘤功效  为了评估PEG-PCL-IR780- TPZNP的治疗效果,将携带4T1肿瘤的小鼠随机分为四组,包括PBS,IR780(1.5 mg / kg,根据IR780),PEG-PCL-IR780(1.5) mg /kg,根据IR780)和PEG-PCL-IR780-TPZ(1.5 mg / kg,根据IR780)。 PBS组的小鼠接受100μLPBS作为阴性对照。其他组的小鼠通过静脉注射用100μL纳米颗粒处理,然后进行808 nm激光照射(1 W/ cm2)5分钟。记录平均肿瘤体积。相对肿瘤体积(RTV)的计算如下:RTV = V / V0,其中V代表每三天记录的体积,而V0代表原始体积。最终处理后,对小鼠进行人道牺牲以收获主要器官,并对其进行进一步的组织病理学分析。  组织病理学分析  收集器官和肿瘤组织,用PBS洗涤3次,然后立即固定在多聚甲醛溶液(4%w / v)中一天。之后,将组织包埋并切成30μm切片。最后,使用免疫组织化学(IHC)染色(Ki67和HIF),免疫荧光染色(CD31)以及苏木精和曙红(H&E)对切片进行染色。、  体内微正电子发射断层扫描(PET)成像  肿瘤缺氧的评估是使用micro-PET成像进行的。每个治疗组中的小鼠(PBS,IR780 +激光,PEG-PCL-IR780 +激光和PEG-PCL-IR780-TPZ+激光)静脉注射18F-氟嘧啶(18F-FMISO,75μCi/小鼠,100μL)。然后,使用Inveon小动物PET/CT系统对小鼠的肿瘤缺氧进行照相(宾夕法尼亚州西门子)。所有图像均使用Inveon Software(Siemens,PA)重建。  肺转移评估  使用如上所述建立的人工模拟肺转移模型研究了肺转移抑制作用。具体来说,在治疗后22天,肺转移小鼠被人道地牺牲了。收集肺并洗涤。切除的肺中可见的白色结节表明肺转移。通过奥林巴斯显微镜仔细计数肺转移性结节的数目。浸泡在溶液(4%w / v多聚甲醛)中的切除肺的H&E染色也用于评估组织学和病理学。  体内抗肿瘤免疫力评估  为了评估体内抗肿瘤免疫力,使用CRT的免疫荧光技术对肿瘤组织切片进行染色。使用免疫组织化学(IHC)研究了肿瘤中CD8 + T细胞的渗透。简而言之,收获肿瘤组织并进一步消化成离散的单细胞。随后,从悬浮液中吸出离散细胞,并使用PerCP偶联的抗小鼠CD86抗体和FITC偶联的抗小鼠CD11c抗体进行标记,以鉴定成熟的DC。使用APC偶联的抗小鼠CD8抗体,FITC偶联的抗小鼠CD4抗体和PE偶联的抗小鼠CD69抗体分别鉴定CD8 +细胞和CD4 + T细胞。最后,利用流式细胞术鉴定活化的效应细胞。  体内生化分析  将小鼠血液和组织收集到乙二胺四乙酸钠(EDTA)抗凝管中,以评估PEG-PCL-IR780-TPZ NP在体内的细胞毒性。进行了生化分析以检测体内的系统副作用,包括红细胞(RBC),白细胞(WBC),血红蛋白浓度(HGB),平均红细胞血红蛋白含量(MCH)和均值血红蛋白浓度(MCHC)。血小板水平(PLT)是评估脾功能的重要指标。  统计分析  所有统计分析均使用单向方差分析进行。所有数据均以平均值±标准差表示偏差。 * P值<0.05表示显着差异。  结果与讨论  PEG-PCL-IR780-TPZ NP的表征  PEG-PCL NP和PEG-PCL-IR780-TPZ NP的形态如图2A和B所示。PEG-PCLNP的平均大小非常接近PEG-PCL-IR780-TPZ NP的大小。如图2C所示,PEG-PCL-IR780-TPZNP的平均流体动力学直径约为135 nm,略大于PEG-PCL NP的平均流体动力学直径(125 nm)。吸收光谱表明,PEG-PCL在NIR窗口中没有明显的峰(图2D)。但是,PEG-PCL-IR780-TPZ NP的紫外-可见光谱有两个峰,归因于TPZ和IR780,证明TPZ和IR780成功地被PEG-PCL NP包封。图S1和S2分别显示了不同浓度下IR780和TPZ的吸收曲线。根据较早的数据,对IR780和TPZ的标准吸光度与浓度曲线进行了定量(图S3和S4)。 PEG-PCL-IR780-TPZNPs中IR780(3.28%,70.23%)和TPZ(3.33%,71.28%)的载药量和包封效率被计算了。考虑到药物输送系统(DDS)的稳定性是体内应用的先决条件,因此在37°C下将血清或PBS与PEG-PCL-IR780-TPZ NP混合以模拟体内生理条件。如图2E所示,在8天的时间内,大小没有明显变化,说明了PEG-PCL-IR780-TPZ NP作为DDS的出色稳定性。药物释放是智能DDS的重要角色。据报道,过量的ROS会损害PEG-PCL,从而导致随后的货物释放。作为NIR光敏剂的IR780能够产生单线态氧(一种类型的ROS)。我们推测了PEG-PCL-IR780-TPZNP在暴露于808 nm激光的照射下是否能迅速释放IR780。如图2F和图S5所示,在没有激光照射的情况下,未检测到IR780和TPZ从PEG-PCL-IR 780-TPZNPs中释放出来,表明PEG-PCL-IR780-TPZ NPs在循环中相当稳定。 相反,在808 nm激光的照射下,PEG-PCL-IR780-TPZ NP迅速分解,从而牢固有效地释放了IR780和TPZ。  因字数限制,文章未完点击查看:更多有医学分类文章更多生物学分类文章使用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:pubmed
2021-05-06 20:00:37
32
想要免费翻译PDF文档、65页PPT翻译?
PDF和PPT文档是日常生活中最常见的文档之一了,对于上班族而言两者都需要经常接触,当文档需要翻译怎么办?word文档还好,一般PDF、PPT的文档页数非常之多,比如最近网络上比较火的“65页PPT”,页数这么多翻译起来费时不说还很麻烦,今天小编带来“傻瓜式”教程,教您一招解决PDF文档翻译、PPT翻译!第一步:打开福昕翻译官网,点击上方【文档翻译】功能,页面跳转后点击【免费上传】按钮上传文档。第二步:文档上传后,选择翻译需求,也有试用版免费文档翻译功能!确认译文语言后点击【开始翻译】。第三步:稍微眨眨眼,文档就翻译成功了,之后可操作在线查看译文和下载保留原文格式的译文。下图为在线双语译文阅读。 只需要打开福昕翻译、上传文档,最后点击开始翻译,两步一键就可以快速进行文档翻译啦,格式包括word文档翻译、PPT文档翻译、PDF文档翻译、甚至是Excel文档翻译都可以完成,这么好用的翻译教程快收藏去福昕翻译使用吧!
2021-04-15 19:34:46
72
PDF文档快速翻译,还保持原文排版不变?安排
听说福昕翻译使用文档翻译操作简单,还可以保持原文排版不变?安排。1)首先打开福昕翻译,找到文档翻译功能,将文档上传(可以上传翻译PDF、Word、PPT、Excel常用文档格式)。2)按需翻译,选择翻译需求、确认翻译语言,最后点击【开始翻译】 免费版:在线免费阅读译文,支持下载双语和高保真译文高保真:保留原文样式和排版,高性价比。专业版:适用于论文、说明、报告等,对排版高要求的文档翻译,支持扫描件点击【开始翻译】后,系统将快速完成文档翻译,之后可以操作在线阅读和下载译文,下图是下载“高保真”译文的对比图,左侧为原文,右侧为翻译后的译文,真的有保留原文格式和排版,而且翻译快速操作简单,可以安排!
2021-04-08 19:08:37
117
放松长出更多的头发?
Relax to grow more hair放松以生长更多的头发已经发现应激激素通过皮肤细胞来信号来抑制小鼠中毛囊干细胞的激活。当该信号传导被堵塞时,刺激毛发生生长。强调人类,注意。  当美式足球四分卫亚伦·罗杰斯(Aaron Rodgers)在一个赛季糟糕的开局后告诉球迷放松身心时,他几乎不知道自己也在给头发护理小费。在漫长的大流行一年之后,他的建议现在特别有帮助。约有四分之一感染COVID-19的人在症状发作后六个月出现脱发1,这可能是由于感染和恢复的折磨导致的全身性休克。长期以来,慢性压力与脱发有关,但是将压力与毛囊干细胞功能障碍联系起来的潜在机制尚不清楚。Choi等人在《自然》中撰文。2揭露鼠标中的连接。在一个人的一生中,头发生长循环三个阶段:生长(Anagen),退化(卡塔根)和休息(遥控器)。在Anagen期间,毛囊连续推出一个生长的毛轴。在卡塔根期间,毛发生生长停止,毛囊的下部缩小,但头发(现在称为球杆发)仍然存在。在纬纱期间,俱乐部头发仍然休眠一段时间,最终脱落。在严重的压力下,许多毛囊过早进入遥感,头发迅速下降。  毛囊干细胞(HFSC)
2021-04-06 20:44:32
119
超硅酸和扭转染色质纤维,竞争通过蛋白来驱动回路挤出
超硅酸和扭转染色质纤维之间的熵竞争通过伪拓扑结合的休蛋白来驱动回路挤出 RenataRusková1,2 和Dušanracko1,*   引文:Rusková,r。 RACKO,D.超硅酸和扭转染色质纤维之间的熵竞争通过伪拓扑结合的CONSIN驱动回路挤出。生物学2021,10,130. https://doi.org/10.3390 /Biology10020130  学术编辑:伊恩威尔和卡罗琳A.奥斯汀  收到:2020年12月3日  接受:2021年2月3日  发布时间:2021年2月7日  出版商注:MDPI在发布地图和机构附属中的司法管辖权索赔方面保持中立。   版权所有:©2021由作者。被许可人MDPI,巴塞尔,瑞士。本文是在Creative Commons归因(CC)许可的条款和条件下分发的开放式访问文章  1 聚合物研究所,斯洛伐克科学院,DúbravskáCESTA3,84541布拉索夫,斯洛伐克; renata.ruskova@savba.sk。2 塑料,橡胶和纤维(IPMFCFT),化学和食品技术,斯洛伐克理工大学,81237 Bratislava,斯洛伐克 简单的简介:染色质动力学和染色质结构是聚合物物理学和活性生物过程的双向关系。由于对计算生物学和建模领域的研究,计算机模拟在研究这些复杂关系方面是必不可少的。现在普遍认为,在染色质的中间排序范围内发生的环状结构是通过涉及专门蛋白质(结构维持络合物或SMC)的环形挤出机制形成。虽然SMCS的电机活性很长一段时间,但最近发现了Cohesin的运动活性(戴维森2019)。虽然Cohesin的运动活动的证据缺失,但是计算机模拟发现了可以有效地驱动Loop挤出的其他机制,但计算机模拟已经发现了没有SMC的运动活动。这些机制考虑了通过渗透压转录驱动的环路挤出或熵驱动的环挤出。在以前的模型中,我们已经表明,通过在转录期间形成的perectoneme,可以在机械上按压携带手铐构象的休蛋白,在手铐的接头部分上施加压力。在当前的工作中,我们使用粗粒化分子模拟来进一步探索由超录制驱动的挤出,同时采用更低的超级超录。此外,最近的作品有利于辛酸在纤维上的非拓扑结合,这将解决一系列拓扑问题,同时绕过坐在DNA上的其他分子机械。我们通过计算机模拟显示,超卷绕可以驱动环路挤压而不利用机械推动Cohyin手铐的接头部分。因此,该工作解决了分子生物学中的当前问题,并采用了研究中的先进方法和原始解决方案。  摘要:我们提出了一种用于休尼蛋白介导的环形挤出模型,其中环路挤出通过超硅酸纤维和扭转的染色质纤维之间的能量差来灌注。通过不同的阴性摩擦在Cohonein环和染色质纤维之间的施加摩擦来控制不同水平的阴性超级含量。通过与TOP1相关的RNA聚合酶产生负超级卷的速度保持恒定,并且对应于每秒10个转动。该模型通过粗粒分子模拟测试,在普通纤维和周围介质的2至200倍之间的各种摩擦范围内进行测试。较高的摩擦允许积累的超级煎锅,而产生的挤出速率也增加。所得对给定范围的研究摩擦的挤出率在1至10kbps之间,但观察到高摩擦处的速率的饱和度。计算出的联系地图表明在较低水平的超录体中获得的定性改善。数学方程的配合定性地再现了从仿真获得的超级录的环尺寸和水平,并支持所提出的熵驱动挤出机构。 Cohesin环在纤维上伪拓扑上束缚,该模型表明拓扑结合不是必需的。关键词:DNA;染色质;聚合物;分子动态;粗粒模拟;超级录;环挤压       1. 介绍  DNA是一种高度结构组织的生物聚合物,允许活细胞中遇到的高水平压实[1]。从其双螺旋结构开始,可防止分子绕其轴线自由旋转,进一步缠绕蛋白质,产生称为核蛋白的DNA蛋白质复合物[2]。核体是染色质的基本构建块。结果,染色质更准确地看到比分子更准确地看到纤维。每单位长度DNA的核体的数量因生物体对生物而变化[3]。通过接头DNA分离核体,接头DNA的尺寸在扭转刚度方面确定染色质纤维的生物物理性质[4]。  此外,在更高水平的组织中,染色质纤维形成环。首先在20世纪70世纪70世纪70年代末端观察到循环的溶解中期染色体,其显示出约100kb的环蛋白支架[5]。在20世纪80年代初提出了一种形成这些环的第一广义机制,而提出了在环形成中参与的专用蛋白质复合物的存在[6]。自20世纪90年代以来,我们已知三种称为结构维持的蛋白质或SMC,能够进行这种作用,即凝结I和II和Cohyin[7]。在2010年代初期,通过克莫摩尔组构象捕获方法,Hi-C的方法确认了环间染色体中的环的存在[8-10]。观察到的接触概率的区域进一步被命名为拓扑关联结构域(TAD)可能是由于与细菌染色体中长期存在的拓扑结构域的相似性。如今,SMC在来自细菌对人类生物体的环形成和染色体组织中的作用通常被接受[11]。虽然SMCS的电机状活动的直接证明是待处理的,但它已经规范了很长时间,并且由Marko等人提出了第一个模型。 2012年[12]。多次实验表明了凝结夹蛋白运动活性的证据。较少,最终由Dekker等人提供第一个直接证明。通过使用荧光显微镜的视频记录,显示由Coninsins[13]显示不对称的环形挤出。 Cohesin的电机活性是一个更复杂的故事,并且只有最近的论文在脱蛋白DNA中显示出弱的运动活性,并且在体外实验中存在蛋白质载体Nipbl [14]。随着时间的推移,出现了几种用于蛋白质介导的回路挤出机制的机制,其中蛋白质可以作为活性电机起作用,其中仅通过粗粒模拟仅少数少数已经进行了建模和模拟[15]。在其他机制中,现有模型提出了蛋白质和蛋白质的起伏作用  通过转录[16]或通过渗透压驱动的挤出方法[17,18]。  在转录驱动的环挤出的情况下,我们提出了一种模型,其中在转录期间产生的超级卷轴从Cohonein环的一侧积聚,这是Cohyin [19]的染色质纤维夹杂物的有利图片之一。模型中的童宾戒指拓扑地以手铐的形式拓扑上拓扑。通过推动的超级卷轴推动手铐的关节部分,移动环并挤出环。被证明的模型在模拟对称和不对称环挤出方面是成功的,并且它足够快,以模拟每秒千克底对的生物学相关速度的挤出。同时,它解决了沿着超录的梯度自然移动的运动方向性的问题,从回路内的超录到域的边界。该转录也是在细胞中自然发生的过程,因此为环路挤出后的驱动力提供了优雅的解释。 US早期考虑的转录驱动环挤出的模型[20],涉及通过转录诱导的超铜诱导的染色质纤维直接推/挤压核苷酸纤维。在我们之前的工作[20]中,我们还考虑了所需的整个超级锆循环以重组的情况,因为它通过与坐在所形成的环基底部的CTCF蛋白质接触来阻止植入的CTCF蛋白质[20]。在这里,考虑到超级硅酸和扭转染色质纤维之间的熵竞争导致环路挤出的模型,我们集中了在生成相对简单的环路形成TAD的情况下。众所周知,众所周知,在活性基因[21]的启动子附近,在转录开始之后,Cohesin环分开该区域,其中超录的区域可以通过相关的DNA拓扑酶的作用放松。用CTCF在TADS边界[22]。在我们目前的模型中,我们专注于考虑一种转录RNA聚合酶的最简单情况,以恒定速度进展,并且不会处理如此有趣的问题,因为如果我们有两个会聚或发散聚合酶会发生这种情况。  在过去两年中发现的范围中,我们对Tran-Scription驱动的环路挤出的计算模型需要与最近的实验结果进行调和。首先,我们以前的模拟中遇到的超级录最终变得非常强大,这尚未在人染色质中实验实验观察;此外,这种密集的超级录制将导致观察在接触贴图上的抗对角线特征,这是不希望的。其次,也许更重要的是,Davidson等人的作品。 [14]和Kim等人。 [23]表明,休肽在最伪拓扑上或非拓扑上以最伪拓扑或非拓扑纤维结合,因此转录驱动的环挤出不应利用在Cohesin手铐的接合部分上推动。非拓扑结合还为避免通过实验最近观察到的分子机械的蛋白质或SMC的葡萄蛋白或SMC的最简单的解决方案[24]提供了避免了分子机械的简单方法[24]。  因此,纸张的目的是展示转录驱动的环路挤出的模型是否可以根据新的实验发现,以及转录仍然可以在较低水平的超录和休宁装载时驱动环挤出的时间以非拓扑方式在纤维上。最后但并非最不重要的是,我们表明这种环境中的转录驱动挤出仍然能够在生物学相关的时间来控制环路挤出,并且其机制可以通过与环路挤出的熵模型找到相似度来解释。  2. 材料和方法  我们在可伸展的模拟包装中对柔软物质进行了粗粒的分子动力学模拟[25,26]。该模型由几个关键组件组成。首先,我们使用圆形串珠链具有扭转刚度,以挤出染色纤维的一部分。使用圆链以代表染色质纤维的原因是消除聚合物末端的尺寸效应和效果。染色质纤维的一个珠子对应于σlj= 10nm,其含有400bp的DNA缠绕在两个核体[27]和〜70 bps的接头DNA。我们的串珠链的总尺寸为150个珠子,其表示较小的60kbp循环。珠子通过强烈的谐波电位束缚,并且安装了以排除排除的体积的完全排斥的相互作用电位。此外,我们施加弯曲刚度Kb = 5,使纤维持续长度为50nm [28]。典型的串珠链模型没有扭转刚度。为了将扭转刚度包括到模型中,我们包括额外的虚拟珠子,该虚拟珠子没有排除的体积相互作用,并且仅展示具有周围介质的流体动力阻力γ。这些额外的珠子相对于染色质链的主轴连接,它们设定为γ=γr= 1。随后,这些围绕围绕扭转电位互锁,该扭转电位为扭转变形产生能量惩罚。在我们之前的工作中可以找到如何建立具有扭转僵硬的聚合物模型的参数和详细程序,并在我们之前的工作中找到[29-31]。  此外,为了模拟Cohesin环,我们使用较小的串联螺纹以伪拓扑方式拧在圆形染色质链上,用单环与两个纤维一起形成。环由14个珠子组成,每个珠子表示10nm。这使蛋白质的最大尺寸在约50nm长的杆状配置中,在实验报道的10和20nm之间的纤维上螺纹上的开口的尺寸为[32]。为了模拟咖啡蛋白和染色质纤维之间的摩擦,水动力阻力γ(XC)=γc的虚拟围绕珠粒和相邻的真实珠子是  对于在环的内横截面中发现的特定珠子的增加,沿着模拟光纤定义为XC。在模拟中,我们调查了增加阻力γc对累积超录和环路挤出速度水平的影响,而我们使用γc的值在比实际珠粒γr= 1的拖动大的2到200倍之间。要在光纤上加载环,我们使用了Bonato等人描述的修改方法。[33]。首先在折叠的手铐构象上围绕装载珠子(XC= 0)定位,其缠绕在纤维周围的两个珠子的两个环。在下一步中,重新安装咖啡蛋白的弯曲刚度,从而导致折叠的手铐配置的开口。除了这些初步步骤之外,还除去了产生手铐配置的接合部分之间的珠子之间的键。同时,Cohesin环和装载珠之间的排除体积相互作用增加到3σB(同时在1σB处保持纤维珠子之间的排除体积),以防止伪拓扑螺纹环从链条滑动。排除体积的增加的尺寸可以代表RNA聚合酶+TOP1电机的增加,这在纤维上装载后,开始在环后面的超级录制。表S1中提供了具有我们粗粒模型中采用的相互作用参数和模型方程的珠子设置的概述。  与古典串珠式型号相比,我们模型中的另一个先进特征是表示引入负超细量的有源生物分子机的电动机。概念上,该电动机由与TOP1 TOPOISOMERASE相关的RNA聚合酶组成,所述拓扑酶消除正超级录制,留在系统中仅留下负极超芯片的助焊剂[34]。在以前的作品中,我们显示了两个电机的实施,以恒定的速度和恒定力引入负超级录制[30]。在本模型中,我们使用电动机引入负面超级录,恒定速度为每秒10个转换。  在我们的模型中实现的一个新功能正在移动缺口的刻痕,允许释放超录。这些放置在移动的Cooin戒指之前放置了一个珠子。我们已经实施了该特征,以消除模拟的尺寸效果,并结合一个假设,即通过TopIIB的TAD边界在TAD边界处快速地放松的超录的假设[22]。  为了校准我们的模拟时间单位,我们使用与我们在超级录制上的工作中的工作方法类似的方法作为DNA的衰退的驱动力[35]。我们首先进行了一系列模拟,以找到模拟电动机的旋转速度,其中γc=γr= 1,即在池内和纤维之间没有过度摩擦,并且未观察到超录的积累。我们在每36,000个集成时发现了我们的电机一次。随后,我们在非常长的仿真运行中观察到非常长的模拟,并且没有观察到池内环的视觉扭动或明显推动。我们的集成步骤设置为Δτ= 0.0025时间单位,一个完全旋转花了90个时间单位。接下来,我们确定了关系模拟时间单位与DI SeTefano等人使用的方法之间的模拟时间单位和物理时间。这样的时间单元对应于Stokes的时间τ=6πησ3/ kbt =4.5μs*η,其中η是周围介质的粘度[36]。为了每秒获得10个轮换,我们认为周围介质的粘度是纯净水的240倍。该值是合理的,因为在实验上报告了活细胞中的分子吹拍存在的粘度值,纯水的220,000倍[37]。 γC= 2γR的最长模拟需要三周时间才能模拟,并且最短的时间,γC= 200γR的运行,花了大约两天。通过使用增加的粘度来校准有助于节省计算时间并使通过摩擦速度更快地进行摩擦介导的环路挤出的模拟。  此外,我们采用了计算分析工具来计算挤出的循环中的扭曲和扭曲先前[38]。  3. 结果与讨论  3.1. 粘着剂施加的摩擦力控制毛圈的挤出速率   正如我们在介绍中提到的那样,目前有几种现有机制驱动环路挤出。最近发现Cohesin可以表现出弱的电动机,积极挤出染色质纤维。在NIPBL装载机存在下,该活性在体外实验中显示了剥夺DNA的体外实验[14]。在使用的能量方面相对较弱,但在2.1kbps的挤出速率方面,这种电动机活动相对较弱[14]。除了Cohesin作为电机的经过验证的能力,还有其他不同的机制,提出有效地挤出纤维并因此能够增强挤出[16-18]。这些包括纯粹衍射回路和转录驱动的挤出。在我们以前的转录驱动挤出模型中,我们表明,转录过程中产生的超级卷积可以非常高效,强大用于挤出环[18]。然而,我们之前的模型本质上预期的Cohonein环的手铐构象和机械推动了手铐的关节部分上的新出现的超级卷轴。因此,我们想测试具有转录诱导的超级录的模型是否仍然可以增强改性条件下的环路挤出。在这些条件下,休蛋白由具有两个纤维的单环表示,但仍然在环和纤维之间诱导摩擦。纤维和休蛋白之间的摩擦水平旨在用于控制积累的超录的水平,并且可能是环挤出速率。尽管可以通过改变电动机的速度来控制超级录的水平,但超录的产生速度是通过RNA聚合酶产生的每秒约10转的生物固定参数[39]。因此,我们假设改变产生超级录制的电动机的速度是不正确的。我们考虑改变Cohesin和纤维之间的摩擦作为最佳选择。 Stigler等人的实验工作。表明这种摩擦可以非常高,使得Cohesin的自我扩散在没有主动过程的帮助下,在生物学上合理的时间内有效的环路挤出需要太长的时间[40]。另一方面,Co的摩擦和纤维之间的摩擦不仅会通过影响纤维的轴向旋转而改变超级录制,而且还将施加更高的粘性和纤维的互平移运动,即环的扩散。这使得摩擦与池中的累积和共同扩散之间的关系相当不普通,并且需要被模拟探索。  这决定了模拟中的第一步,当构建模型之后,我们通过施加的池内和纤维之间的不同摩擦进行了一系列模拟。这些模拟在挤出速率作为摩擦的函数方面表现出明显的效果和系统依赖性(图1A)。首先,我们观察到通过使用所谓的伪拓扑结合中的纤维的单个环来挤出环挤出[14]。在下一步中,我们使用模拟时间评估了循环的大小。计算出的循环大小L相对于模拟时间导致循环挤出速率,我们稍后在讨论结果中显示(图3)。从模拟中,我们观察到,在从电动机朝向由圆形串联环的域的方向上向圆形串联的磁盘的相对侧向远离串珠,沿着圆形串联表示的域的相对侧,沿着圆形串联的侧面的相对侧,绕环的持续运动方向地挤出。链。这种定向运动即使对于在γc=2的水平施加的情况下施加的非常低的摩擦而占上风。在池内和光纤之间非常高的摩擦的情况下,运动更加直接,循环尺寸的瞬时值的波动得多图1b)。挤出也变得非常对称。在模拟中最高γC的情况下整个环的挤出时间比最低γC=2快15倍。在采用低γ的情况下,挤出变得更加随机和不对称。仿真还表明,当γc从2〜20的增加速度升高4次时,环挤出速率对摩擦的依赖性饱和饱和,但进一步增加了γc的10至γc= 200倍速度挤出2次。这表明存在最佳摩擦的值介导环挤压,之后环挤出速率达到其最大值,后来较高的摩擦,挤出可能会降低甚至停止。然而,在我们的模拟中,我们不会探索高的摩擦,因为这需要减少集成步骤,并且在计算时间方面会使模拟不可行。     (a) (b)  图1.环路挤出的模拟。 (a)回路尺寸显示为Cohyin环和染色质纤维γc= 2,5,200和200之间的四个摩擦设置的时间依赖性。图表表明环路挤出率增加,摩擦较大环的位置。红线显示通过提出的差分方程系统的数值求解来获得的配合来描述熵驱动挤出的过程(方程(1)和(2))。(b) 在它们的尺寸方面,循环各个臂的环形挤出的进展被计算为环在臂上的位置和电动机的位置的差异。该图表明挤出变得更随机,用于γC的较低设置,使挤出也更加不对称。作为施加摩擦的函数,在挤出回路内的超煎料的积累中也发现了差异。我们在挤出回路内评估了挤出回路内的超级录,而超级录的数量和密度(图2)。为此,我们计算的挤压环中的卷曲和扭曲,该挤压环绕在染色质纤维上的幼枝上的核苷酸纤维的位置χc界覆盖。计算的扭曲和扭曲的总和根据富勒的定理提供了链接数ΔLK的值[41]。这可用于计算SuperCoiling的密度为σ=(LK LK0)/LK0 =ΔLK/ LK0,其中LK0是缓和状态的连接数,并且在这里,它将对应于松弛DNA的匝数的数量LK0=〜40转束[42]。在挤出回路期间,通过纤维的弛豫部分的流入来宽松地放松环路中的超级录制,而且通过纤维的轴向旋转来通过轴逸出通过环。在模拟期间,执行从几十到数百个电动机的旋转。这与循环的大小一致,即60 kbp;因此,整个纤维的挤出应该花费10多秒钟的时间。以每秒10个转率的速率引入超级录制的聚合酶的总旋转数量应为数百个。计算的链接号表示,在大伽马的情况下,放宽约87.5%的旋转。在具有低γC的模拟的情况下,由于轴向旋转以及将超级硅酸盐部分的超级滤育物流过池内环的染色蛋白中的超级螺旋部分中的超级涂层溶解到环中,回路均损失高于99%的旋转。链接号的波动在其幅度方面主要来自扭曲的波动。在具有较低设置γC的系统的情况下,整体波动更加强烈。在摩擦较低的情况下,超录的积累具有强烈的非平衡特征。另一方面,在更大的摩擦力的情况下,  超螺旋的积聚强烈地限制了轴向旋转引起的超螺旋的渗出,而超录的电机与幼耳的位置梯度快速重新建立,产生线性依赖性Δlk随时间推移。    (a) (b)  图2.超级录的模拟。(a)图表显示了白色公式ΔLK=ΔTW+ΔWR的链接号的累积。链接号的累积显示为在Cohyin环和染色质纤维γc= 2,5,20和200之间的四种摩擦设置中的时间依赖性。(b)作为σ=获得的超级录制的密度ΔLK/L.红线是由求解描述超级录制的差分系统的辅助系统,其具有由池内位置限定的移动可渗透的边界。  3.2. 转录驱动环挤出的数学模型为了理解和解释在模拟中看到的挤出机制,可以想到纤维的超硅和扭转部分的熵竞争。奥兰蒂尼等人研究了类似的问题。对于用Sliplink分离的圆形聚合物链上的两个竞争结[43]。在本文中,作者表明,增加应对颗度的拓扑复杂性降低了聚合物的构象空间。因此,具有更复杂的结的分子部分试图通过通过由Sliplink分开的边界拉动较大的聚合物来增加其熵。因此,在一个类比图像中,人们可以思考压实的超底环,试图通过通过池蛋白环拉动纤维的宽松部分来恢复其熵。然而,用于纤维超级钻井和扭转部分的竞争模型对模拟的困难造成更多困难。这是因为,与奥兰蒂尼等的问题不同,我们的系统不是拓扑限制。超级录制可以通过轴向旋转逸出。即使我们通过摩擦限制轴向旋转,Cohesin的扩散运动仍然可以有效地从挤出回路中擦除超镀。因此,需要考虑更复杂的动力学均衡。在动力学平衡的情况下,电机连续引入超级录。在该模型中,内在的最小能量点是池内坐在聚合酶的位置时。然而,由于代表聚合酶和Cohyin环之间的珠子之间的排除体积的增加,这是不可能的。因此,系统降低其能量的唯一方法是通过从转录部位前进的Cohesin环,这将纤维的松弛部分诱导进入环路。这导致能量下降;但是,超级录上很快补充;因此,CoInin再次移动以获得新的能量最小状态(视频S1)。以这种方式,通过Cohesin运动挤出环,其遵循最小能量路径为了对该图片进行数学描述,可能需要描述沿纤维超螺旋的非平衡演化。为此,我们使用了非平衡扩散的Fick第二定律,并按照Brackley等人的建议平衡了沿纤维的超卷曲。在他们的超卷随机模型中[ 44 ]  其中σ表示沿着距离X的超级录的密度,距离X的距离X表示在模拟链上和模拟时间τ上表示。尽管这里的超录的扩散性在此表示为位置Dσ(x)的变量,但其在沿光纤模拟中的围绕围绕围绕围绕围绕围绕围绕的γr的值相同,并且为所有x设置为γr= 1除外Cohesin XC的位置。该值在Cohesin XC的位置增加,使得DC=Dσ(XC)=KBT/γc=DσγR/γc,具有ε= kbt = 1。最初,在时间τ= 0时,纤维是扭转的松弛σ(x,τ)= 0.对于次τ> 0,在数学上连续地引入超级录制的X = 0的位置在哪里,被视为边界条件的设置(∂Σ/∂T)生产速度为Σp= 10次旋转。该等式在区域X C <0,XC>内求解,该XC<0,XC>表示环的尺寸。因为Cohesin的运动是我们所提出的模型中最突出的特征之一,所以这需要包括在解决方案中。因此,我们需要描述Co的运动,并解决超级录的扩散作为移动边界集的问题AS(∂Σ/∂T)x=Xc=Dσ(∂σ/∂x)dσ(xc)(∂σ/∂x)[45]。Cohesin的运动可以通过覆盖Langevin方程的位移方程来描述,在这里我们忽视了等式的嘈杂部分。  点击查看:下部分内容更多生物学分类文章更多医学分类文章使用文档翻译功能  免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。  来源于:mdpi
2021-03-24 14:10:40
97
细胞分裂过程中线粒体混合
称为线粒体的细胞器在细胞中起着至关重要的作用,并且在分裂时必须成功地继承。事实证明,在细胞分裂过程中,与肌动蛋白丝的相互作用与混合和分配线粒体的三种类型有关。蒂尔·克莱克(Till Klecker)&本尼迪克特·韦斯特曼1855年,德国医生Rudolf Virchow创造了短语Omnis cellula e cellula-所有细胞都来自细胞。换句话说,细胞源于现有细胞的生长和分裂。染色体中存储的遗传信息在细胞分裂过程中以高度有序的过程(称为有丝分裂)传递给下一代。生物学家花费了数十年的时间来破译这种引人入胜的过程的分子编排,但是对称为线粒体的细胞器遗传的关注却很少。这些对于能量代谢是必不可少的,并且由于它们不能从头产生,因此它们也必须被继承。Moore等人在《自然》中写作。1个 以前所未有的详细程度描述此过程。细胞骨架(决定细胞结构的蛋白质网络)的两个主要成分负责细胞动力学。这些是微管,其结构可作为细胞器长距离运输的轨道。肌动蛋白丝和肌动蛋白丝,它们在短距离内介导运输,并在称为皮质的区域内使细胞外边界处的形状发生变化。在细胞分裂过程中,细胞骨架被彻底地重塑。微管建立了一种称
2021-03-08 16:17:28
165
研究发现儿童饮食对终身有影响
Study finds childhood diet has lifelong impact研究发现儿童饮食对终身有影响 by University of California - Riverside加州大学河滨分校 Study in mice finds high-fat, high-sugar diet has long-lasting effects on the microbiome. Credit: UCR对小鼠的研究发现,高脂,高糖饮食对微生物组具有持久的影响。信用:UCR Eating too much fat and sugar as a child can alter your microbiome for life, even if you later learn to eat healthier, a new study in mice suggests.一项新的对老鼠的研究表明,即使小时候吃太多的脂肪和糖,也会改变你的微生物组的生活,即使你以后学会饮食更健康。 The study by UC Riverside researchers is one of the first to show a significant decrease in the total number and diversity of gut bacteria in mature mice fed an unhealthy diet as juveniles.加州大学河滨分校的研究人员是第一批表明以不健康饮食作为未成年人喂养的成熟小鼠肠道细菌总数和多样性显着减少的研究之一。 "We studied mice, but the effect we observed is equivalent to kids having a Western diet, high in fat and sugar and their gut microbiome still being affected up to six years after puberty," explained UCR evolutionary physiologist Theodore Garland.UCR的进化生理学家西奥多·加兰德(Theodore Garland)解释说:“我们研究了小鼠,但是观察到的效果相当于孩子们吃了西方饮食,脂肪和糖分很高,而且肠道微生物组在青春期后的六年内仍然受到影响。” A paper describing the study has recently been published in the Journal of Experimental Biology.最近在《实验生物学杂志》上发表了一篇描述该研究的论文。 The microbiome refers to all the bacteria as well as fungi, parasites, and viruses that live on and inside a human or animal. Most of these microorganisms are found in the intestines, and most of them are helpful, stimulating the immune system, breaking down food and helping synthesize key vitamins.微生物组是指在人类或动物体内和内部生活的所有细菌以及真菌,寄生虫和病毒。这些微生物大多数都在肠道中发现,它们中的大多数对刺激免疫系统,分解食物并帮助合成关键的维生素很有帮助。 In a healthy body, there is a balance of pathogenic and beneficial organisms. However, if the balance is disturbed, either through the use of antibiotics, illness, or unhealthy diet, the body could become susceptible to disease.在健康的身体中,病原体和有益生物之间存在平衡。但是,如果通过使用抗生素,疾病或不健康的饮食来破坏平衡,则身体可能容易患病。 In this study, Garland's team looked for impacts on the microbiome after dividing their mice into four groups: half fed the standard, 'healthy' diet, half fed the less healthy 'Western' diet, half with access to a running wheel for exercise, and half without.在这项研究中,Garland的研究小组将小鼠分为四组,研究了对微生物组的影响:一半进食标准的“健康”饮食,一半进食较不健康的“西方”饮食,一半进食运动的跑轮,还有一半没有。 After three weeks spent on these diets, all mice were returned to a standard diet and no exercise, which is normally how mice are kept in a laboratory. At the 14-week mark, the team examined the diversity and abundance of bacteria in the animals.在这些饮食中度过了三周之后,所有小鼠都恢复了标准饮食并且不进行运动,这通常是将小鼠饲养在实验室中的方式。在第14周的时候,研究小组检查了动物中细菌的多样性和丰富性。 They found that the quantity of bacteria such as Muribaculum intestinale was significantly reduced in the Western diet group. This type of bacteria is involved in carbohydrate metabolism.他们发现,在西方饮食组中,诸如肠杆菌的细菌数量显着减少。这种细菌参与碳水化合物的代谢。 Analysis also showed that the gut bacteria are sensitive to the amount of exercise the mice got. Muribaculum bacteria increased in mice fed a standard diet who had access to a running wheel and decreased in mice on a high-fat diet whether they had exercise or not.分析还表明,肠道细菌对小鼠的运动量敏感。喂养进食了可以运行滚轮的标准饮食的小鼠中的鼠毛细菌增加,而无论是否运动,高脂饮食的小鼠中的鼠毛菌减少。 Researchers believe this species of bacteria, and the family of bacteria that it belongs to, might influence the amount of energy available to its host. Research continues into other functions that this type of bacteria may have.研究人员认为,这种细菌及其所属的细菌家族可能会影响宿主的可用能量。对这种细菌可能具有的其他功能的研究仍在继续。 One other effect of note was the increase in a highly similar bacteria species that were enriched after five weeks of treadmill training in a study by other researchers, suggesting that exercise alone may increase its presence.另一个值得注意的影响是,在其他研究人员的一项研究中,经过五周的跑步机训练后,高度相似的细菌物种增加了,这表明单独运动可能会增加其存在。 Overall, the UCR researchers found that early-life Western diet had more long-lasting effects on the microbiome than did early-life exercise.总体而言,UCR研究人员发现,早期西方饮食对微生物组的影响远比早期运动更为持久。 Garland's team would like to repeat this experiment and take samples at additional points in time, to better understand when the changes in mouse microbiomes first appear, and whether they extend into even later phases of life.Garland的团队想重复此实验,并在其他时间点进行采样,以更好地了解小鼠微生物群的变化何时首次出现,以及它们是否延伸到生命的后期。 Regardless of when the effects first appear, however, the researchers say it's significant that they were observed so long after changing the diet, and then changing it back.研究人员说,无论何时开始出现这种影响,很重要的一点是,在改变饮食然后再改变饮食之后,很长时间才观察到它们。 The takeaway, Garland said, is essentially, "You are not only what you eat, but what you ate as a child!"加兰德说,外卖实质上是:“您不仅是所吃的东西,而且还是您小时候吃的东西!”点击: 查看更多生物学文章 查看其他分类文章 查看更多双语译文文章 使用双语译文翻译免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-05 19:49:45
277
心脏骤停中的ECMO:文学叙事回顾(结论)
查看心脏骤停中的ECMO:文学叙事回顾7. 神经学结果不管插管时的心率如何,ECPR都能优化因室颤和/或心动过速(VF / VT)导致难治性CA患者的器官灌注。通过达到血液动力学稳定性,ECPR可以阻止缺血性病变的发展,而不必获得自发性循环(ROSC)的恢复。因此,它为纠正长时间的心肺复苏过程中出现的严重代谢紊乱提供了时间,并使治疗可能导致难治性VF / TV持续的潜在病因成为可能。这些稳定策略与难治性CA患者的生存改善和令人满意的神经学预后有关[10,69,79]。此外,ECPR能够使患者在36℃的恒定温度下稳定24小时[80]。在明尼苏达大学的ECPR队列研究中,在开始ECMO之前受益于CPR协会(持续20至29分钟)的患者中,有100%的患者神经功能预后良好。常规心肺复苏组的结果微乎其微,其中只有24%的患者存活下来并具有令人满意的神经学预后。与传统的心肺复苏术组相比,心肺复苏术显示了最长98分钟的心肺复苏持续时间。ECMO发作前的缺血性损伤似乎是预测预后的决定性因素。在同一队列中,超过29分钟的CPR,每10分钟的存活率下降25%[81]。先前的研究还表明,CPR的持续时间与ECPR期间的生存之间存在联系[4,16,82]。ECPR可以在延长心肺复苏后提高生存率,但是避免对那些仅使用常规心肺复苏就可以幸免的人造成伤害是值得关注的。 OHCA受益于常规CPR的患者的最新研究表明,由医疗专业人员在最长28至39分钟的CPR中,有幸存的神经系统状态令人满意的患者中有99%接受了ROSC [83-86]。大多数ECPR计划都要求将患者运送到医院植入ECMO。因此,至关重要的是估计传输指示的时间。确实,将患者转移至心脏骤停状态可能会降低复苏的有效性,并有可能阻止某些患者的生存。雷诺兹等。 [85]研究了从观察性研究中收集到的符合ECPR标准的患者中晚期疗法与转运风险之间的关系。他们包括年龄在18至65岁之间的患者,在有证人在场的情况下发生心脏骤停,在10分钟内开始进行心肺复苏,并且没有心搏停止作为最初的心律。他们发现90%的神经功能预后良好的幸存者在21分钟内有ROSC,如果CPR延长至20分钟以上,则存活的神经功能预后良好的可能性为8.4%。作者建议在进行ECPR运输之前,先进行21分钟的标准复苏。在临床实践中,建议立即转运对最初的复苏措施无反应的心脏骤停患者是合理的。实际上,在欧洲的建议中,执行第一批专门的复苏措施大约相当于10分钟。因此,建议将这段时间用于考虑ECPR的运输。如前所述,在“转移决定”和“有效转移”之间加上最短的时间后,可以将转移时间提高到大约20分钟的CPR。一些中心建议使用自动按压板进行胸部按压。但是,在最近的荟萃分析中,证据水平并不表明包括机械式胸部按压设备的CPR算法优于传统的手动胸部按压技术。在无法进行高质量的手动胸部按压或危险的情况下(例如,很少有救生员,低温CA中的救护人员长时间使用CPR,在救护车中,受过训练的医疗服务提供者使用的机械胸部按压器)是手动胸部按压的合理替代品。在血管造影室或ECPR准备期间)[87]。此外,其他研究者表明,在使用装有机翼方法的担架上移动住院的CA患者时,胸部按压可以产生高质量的胸部按压[88]。ECPR成功的时间竞赛对此类协议的实施具有重要意义。对于目前的院前复苏技术,建议建议在实施ECMO治疗难治性OHCA之前,最佳的CPR时间间隔为30分钟。但是,ECPR的生存益处可能会超过60分钟。因此,ECPR程序应旨在在不到30分钟的时间内使可插管的患者数量最大化,而不必排除复苏时间较长的患者。院前护理的未来优化还可以提高与ECPR相关的生存率。院前CPR策略可改善CPR的灌注或减少患者的代谢需求,可延长有效CPR的时间,从而延缓缺血性损伤的发作。院前ECPR的启动也可以提供快速的稳定。迄今为止,最近发表了关于ECPR在OHCA患者中应用的最大研究。它提供了有关该策略有效性的新信息。 Bougouin等。 [16]报道了巴黎大都会地区超过13,000例OHCA病例。在接受常规心肺复苏术的12396名患者中,有8.6%(1061)可以存活出院,而523名ECPR患者中只有8.4%(44)。尝试进行ECPR,但11%(58)的患者无效。 ECPR组中有利于生存的因素包括短暂恢复自发性循环(ROSC)以及ECPR之前的最初令人震惊的心律。应当指出,院前ECPR与入院后接受ECPR的患者相比,与生存率更高(OR 2.9,95%CI 1.5–5.9,p = 0.002)和更有利的神经系统结果(OR 2.9,95%CI 1.3–6.4,p = 0.008)相关。但是,这项研究有很多局限性,包括选择偏见。启动ECPR的决定是由每个临床医生自行决定的,而不是严格按照预先建立的算法,从而提供了大量潜在的混淆因素。 ECPR患者基线描述的差异表明了这一点。目击者较年轻且更倾向于从CPR中受益(81%vs. 49%,p <0.001),但更相关的是,他们接受了超过30分钟的长时间CPR(99%vs. 77%,p <0.001) 。作者试图通过多元分析(OR 1.3,CI 95%0.8-2.1,p = 0.24)或倾向分析(OR 0.8,95%CI 0.5-1.3,p = 0.41)校正已知的混杂因素,但是他们无法确定ECPR是否与医院环境中的生存改善相关。研究亚组之间存在许多差异,尤其是在没有ROSC的患者和具有不可电击节律的患者之间。 ECPR可能在这些亚组中表现出不同的结果,也许将来需要专门研究对其进行研究[16]。更相关的是,未检查神经系统结局和长期生活质量。希望不将分析局限于医院的死亡率,而要分析诸如功能恢复和具有可接受的神经后遗症的长期存活的因素[89,90]。这项研究将继续成为机械支持设备的信奉者,以及他们在改善心脏骤停过程中可能发挥的作用方面。这将刺激该领域的进一步研究,以纠正在患有OHCA的患者中观察到的不良结果。受益于ECPR的患者与接受常规RCP治疗的患者在生存率上没有统计学上的显着差异,这需要重新评估ECPR在OHCA患者中的作用。这最后的出版物确实具有许多品质,包括大量患者,参与小组的功能经验以促进ECPR的迅速实施及其提供“真实”数据的多中心观察设计。最后,ECPR是一种机械支持形式,需要特别复杂和庞大的人力和技术资源组织。它还需要在极端条件下进行插管的从业人员非常高的专业知识。因此,对于维持这些类型的计划至关重要的是,要确保有足够的干预措施,并允许相关专业人员的大量接触,以维持高质量的护理标准。 8. 结论CA仍然是常见的死亡原因和主要的公共卫生问题。迄今为止,常规的心肺复苏术是唯一可用于改善这些患者预后的有效复苏程序。 ECMO是一项复杂且价格相对较高的技术,需要专业知识。因此,它不能在所有医院都使用,而必须在定期执行这些程序的高容量中心进行。ECPR可使传统CPR难治的CA患者获得血液动力学和呼吸稳定,并通过保留器官灌注来开始治疗CA的根本原因。但是,目前的证据并不支持在所有难治性CA患者中常规使用ECPR的建议。因此,似乎关键适当选择那些谁可能会从它的使用中受益患者。这可能包括存在即将死亡风险的患者,这些患者具有专门设计的评分,可以预测与使用ECPR相关的生存获益。使用它的理想好处将是进行足够的复苏,从而促进中长期生存可接受的神经系统结果。最后,通过额外的医院ECPR来最佳管理难治性CA患者的方案仍然是研究的活跃领域。 作者贡献:A.D.C.设计研究,选择文章,收集数据并撰写手稿。 B.A.选择文章,收集数据并撰写手稿。多发性硬化症。写手稿,N.M。收集数据并写手稿C.B.收集数据并写手稿K.B。设计研究并撰写了R.G.设计研究,选择文章,收集数据并撰写手稿。所有作者均已阅读并同意该手稿的发行版本。资金:这项研究没有获得外部资金。数据可用性声明:不适用。利益冲突:作者声明没有利益冲突。参考文献(展示部分文献,可去原文章查看全部)1. Wong C.X .;布朗,答:刘德华; Chugh,S.S .;阿尔伯特,C.M .;卡尔曼(J.M.);桑德斯(Sanders),《心脏猝死的流行病学:全球和区域观点》。心肺圈。 2019,28,6-14。 [CrossRef]2. 严S.甘Y;江N.王荣;陈Y罗Z.宗庆;陈珊; Lv,C.接受心肺复苏的成人门诊心脏骤停患者的总生存率:系统评价和荟萃分析。 Crit Care 2020,24,61. [CrossRef] [PubMed]3. 陈Y林建伟;于慧Ko,W.J .;Jerng,J.S.; Chang,W.T .;陈伟杰;黄南昌; Chi,N.H .;王超等。成人体外循环辅助心肺复苏术与常规心肺复苏术在院内心脏骤停的成年人中的关系:一项观察性研究和倾向性分析。柳叶刀2008,372,554–561。 [CrossRef]4. Wengenmayer,T。罗姆巴赫,S。 F.拉姆斯霍恩; Biever,P.;波德角; D.Duerschmied; Staudacher,D.L.低流量时间对体外循环心肺复苏(eCPR)后存活的影响。暴击护理2017,21,157。[CrossRef] [PubMed]5. 坂本N. Morimura;长浅井Y.横田奈良市长谷Y. Tahara; T. Atsumi;集团,S.-J.S。成人院外心脏骤停的体外心肺复苏与常规心肺复苏:一项前瞻性观察性研究。复苏2014,85,762-768。 [CrossRef] [PubMed]6. Le Guen,M。 Nicolas-Robin,A .;卡雷拉,S。 M.Raux; Leprince,P .; B.Riou;O. Langeron。院外难治性心脏骤停后的体外生命支持。暴击护理2011,15,R29。 [CrossRef]7. E.香川;井上,我。川越石原市Y. Shimatani,库里苏(S. Yakama,Y .;戴K; O.Takayuki;永永等。评估使用体外生命支持进行心肺复苏的院内和院外心脏骤停患者的结局和差异。心肺复苏2010,81,968–973。 [CrossRef]8. Danial,P.;哈贾格(D.) Nguyen,L.S .; Mastroianni,C .; Demondion,P .; M·施密特Bougle,A。 J. Leprince,P .;康贝斯;等。经皮与手术股-股-静脉-ECMO:倾向评分匹配研究。重症监护医学。 2018,44,2153–2161。 [CrossRef]9. 贝莱佐(J.M.) Z.Shinar;戴维斯(Davis)公元前Jaski; Chillcott,S。 Stahovich,M .;沃克角; Baradarian,S。Dembitsky,W.急诊医师启动的体外心肺复苏。复苏,2012,83,966-970。 [CrossRef]10. Lamhaut,L .; Hutin,A .; E. Puymirat; Jouan,J .; J.H.拉斐伦; Jouffroy,R .;贾弗里达格隆角;An,K .;杜马斯F.等。院前体外循环心肺复苏(ECPR)策略治疗难治性院外心脏骤停:一项观察性研究和倾向性分析。心肺复苏2017,117,109–117。 [CrossRef]11. Megarbane,B .; Leprince,P.;Deye,N .; Resiere,D。 Guerrier,G。 Rettab,S。西奥多(J.) Karyo,S .;甘杰巴赫(I.) Baud,F.J.体外生命支持难治性心脏骤停的医疗重症监护室的紧急可行性。重症监护医学。 2007,33,758–764。[CrossRef] [PubMed]12. 奥特加·德巴隆(I.)霍恩比(L.谢米(S.D.);Bhanji,F.; Guadagno,E.成年人难治性院外心脏骤停的体外复苏:对国际惯例和结果的系统评价。心肺复苏2016,101,12–20。[CrossRef] [PubMed]13. 唐娜(J.E.);新泽西州约翰逊;格林伍德,J。盖伊斯基(D.F.); Z.Shinar;贝勒佐(J.M.);贝克尔Shah,A.P .; S.T. Youngquist;马林,M.P .;等。美国急诊科体外心肺复苏(eCPR)程序的实践特征:急诊科体外膜氧合(ED ECMO)的最新技术水平。心肺复苏2016,107,38–46。 [CrossRef] [PubMed]14. Poppe,M。韦瑟角; M. Holzer; Sulzgruber,P .;达特勒M. Keferbock; Zeiner,S。 E. Lobmeyr;范·图尔德(R.齐格勒,A .;等。急诊部门利用紧急体外生命支持的“外出就诊”院外心脏骤停候选人发生率:一年回顾。心肺复苏2015,91,131–136。 [CrossRef] [PubMed]15. 王超周N;贝克尔(L.B.);林建伟;于慧Chi,N.H .;南卡罗来纳州Hunag;Ko,W.J .;Wang,S.S .;曾L.J.等。院外心脏骤停的体外心肺复苏的改善结果–与院内心脏骤停的体外抢救的比较。复苏2014,85,1219–1224。 [CrossRef] [PubMed]16. W. Bougouin;杜马斯F. Lamhaut,L .; E.Marijon。 Carli,P .;康贝斯; Pirracchio,R .; N.Aissaoui; N.卡拉姆; Deye,N .;等。院外心脏骤停的体外心肺复苏:一项注册研究。欧元。 《心脏》杂志,2019,41,1-11。 [CrossRef]17. 英国Longo; Ciuffreda,M .;达安德里亚(D’Andrea);礼貌,北; Locher,J。 Denaro,V.全膝关节置换术中的全聚乙烯与金属支持的胫骨组件。膝盖手术。体育Traumatol。关节镜2017,25,3620–3636。 [CrossRef]18. T.M. Atkinson; Ohman,E.M .;奥尼尔(W.W.);Rab,T.;雪茄,J.E.;美国心脏病学院介入科学委员会。进行经皮冠状动脉介入治疗的患者机械循环支持的实用方法:干预观点。 JACC心血管。互动2016,9,871–883。 [CrossRef]19. A.R. Garan; A. Kirtane; Takayama,H.重新设计急性心肌梗死并发心源性休克的患者的护理:“休克团队”。 JAMA Surg。 2016,151,684–685。 [CrossRef]20. Tchantchaleishvili,V.;华盛顿州哈利南;梅西(H.T.)呼吁建立有组织的全州网络来管理急性心肌梗死相关的心源性休克。 JAMA Surg。 2015,150,1025-1026。 [CrossRef]21. A.R. Garan;埃克哈特武田(K.) V.K.托普卡拉; Klerkin,K .;弗里德·J。 A.Masoumi; R.T. Demmer; Trinh,P .; Yuzefpolskaya,M .;等。急性心肌梗死并发心源性休克后短期机械循环支持设备的存活率和断奶能力的预测指标。欧元。心脏J.急性心血管。护理2018,7,755-765。 [CrossRef] [PubMed]22. 穆勒(G. E.弗莱彻; Lebreton,G .;卢伊特(C.E.); J.L. Trouillet; N.布雷乔特; M·施密特Mastroianni,C .;查斯特(J. Leprince,P .;等。急性心梗性心源性休克的VA-ECMO后的ENCOURAGE死亡率风险评分和长期结局分析。重症监护医学。 2016,42,370–378。 [CrossRef] [PubMed]23. 巴拉特(F.帕帕拉多(F.奥洛里兹(美国); Bisceglia,C .;Vergara,P .;西尔伯鲍尔(Silberbauer),J。 N.Albanese。西里杜(M. D'Angelo,G .; Di Prima,A.L .;等。体外膜氧合对心动过速消融的血流动力学支持。大约心律失常电生理。 2016,9,e004492。 [CrossRef] [PubMed]24. 布鲁纳(M.E.);西恩哈特(N. Shah D .;新泽西州Licker; Cikirikcioglu,M .;布罗查德湖Bendjelid,K .; Giraud,R.体外膜氧合支持是电风暴相关心源性休克患者康复的桥梁。上午。 J. Emerg。中2013,31,467.e1–467.e6。 [CrossRef][PubMed]25. Guglin,M .;扎克(M.J.); V.M.巴赞; B.博兹库特; ElBanayosy,A .; Estep,J.D .; J.Gurley;尼尔森(K.)马利亚拉河;G.S. Panjrath;等。成人腹膜动脉ECMO:JACC科学专家小组。J.上午Coll。乙二醇。 2019,73,698–716。 [CrossRef]26. 罗森茨威格(E.B.);布罗迪(D.哥伦比亚特区艾布拉姆斯; Agerstrand,C.L .; Bacchetta,M.体外膜氧合作为第1组肺动脉高压中急性右心衰竭的新型桥接策略。 ASAIO J.2014,60,129–133。 [CrossRef]27. 班菲M. Pozzi;西恩哈特(N.布鲁纳(M.E.);塔索(Dassaux) J.F. Obadia; Bendjelid,K.; Giraud,R.静脉-静脉体外膜氧合:插管技术。 J.索拉克。 Dis。 2016,8,3762–3773。 [CrossRef]28. R.P. Barbaro; F.O. Odetola;肯塔基州基德韦尔;马萨诸塞州帕登;巴特利特(R.H.);戴维斯,医学硕士;安妮奇(GM)医院级体外膜氧合情况与病死率的关系。体外生命支持组织注册表分析。上午。 J.呼吸暴击护理医学。 2015,191,894–901。[CrossRef]29. 布鲁克曼(L.M.);霍尔兹格拉夫(B. K.帕尔默; Frenckner,B.斯德哥尔摩的经验:体外膜氧合的医院间转运。暴击护理2015,19,278。[CrossRef]30. 诺亚,马萨诸塞州;皮克(Geek)芬尼(S.J.);格里菲斯(美国)哈里森(D.A.)格里夫(R.马萨诸塞州萨迪克; Jek Sekhon; D.F. McAuley;英国Firmin;等。转介到体外膜氧合作用中心和2009年严重A型流感(H1N1)患者的死亡率。 JAMA 2011,306,1659–1668。[CrossRef]31. 皮克(Geek) Mugford,M .; Tiruvoipati,R。威尔逊艾伦(E.塔拉尼(M.M.)希伯特(C.L.); A.Truesdale Clemens,F。库珀,北;等。常规通气支持与体外膜氧合治疗严重成人呼吸衰竭(CESAR)的疗效和经济评估:一项多中心随机对照试验。柳叶刀2009,374,1351–1363。 [CrossRef]32. 莫雷特,M。班菲,C。 Sartorius,D .; Fumeaux,T。 Leeman-Refondini,C .; Sologashvili,T。重用,J。 Nowicki,B。Mamode-Premdjee,J。塔索(D.)等。[“移动” ECMO]。版本号中瑞士,2014,10,2368–2374。33. Benzoni,E .;Terrosu,G.;布雷萨多拉塞拉托,F。A. Cojutti;E.米兰; Dado,G .; Bresadola,F.新辅助放化疗联合手术的临床结局和预后因素分析:腹膜内与腹膜外直肠癌。欧元。 J. Cancer Care(Engl。)2006,15,286-292。 [CrossRef] [PubMed]34. 澳大利亚和新西兰体外膜氧合(ANZ ECMO)流感调查员;戴维斯A.琼斯(D.) M. Bailey; Beca,J .;贝洛莫河;北布莱克韦尔;福雷斯特,P。加塔斯(D.) E.格兰杰等。 2009年甲型(H1N1)流感急性呼吸窘迫综合征的体外膜氧合。 JAMA 2009,302,1888-1895年。 [CrossRef]35. 北帕特罗尼蒂; Zangrillo,A .; Pappalardo,F。佩里斯(Peris)Cianchi,G .;布拉斯基,A .; Iotti,G.A .;阿卡丹,A。 Panarello,G .;拉涅利(Vani)等。意大利ECMO网络在2009年甲型H1N1流感大流行中的经验:为严重的呼吸道紧急暴发做准备。重症监护医学。 2011,37,1447-1457。 [CrossRef]36. Lamhaut,L .;Jouffroy,R.; M.Soldan;菲利普(P.德鲁兹贾弗里达格隆角;Vivien,B .;Spaulding,C .; An,K .;等。非外科手术治疗院外难治性心脏骤停的安全性和可行性。心肺复苏2013,84,1525–1529。 [CrossRef]37. 艾布拉姆斯(D. A.R. Garan;阿卜杜里(Abdelbary); Bacchetta,M。巴特利特(R.H.);贝克(J. Belohlavek,J。陈Y范E. N.D.弗格森;等。关于组织成人心衰ECMO计划的立场文件。重症监护医学。 2018,44,717–729。 [CrossRef]38. 班菲M. Pozzi;布鲁纳(M.E.);里加蒙蒂; N. Murith;穆格尼J.F. Obadia;Bendjelid,K .; Giraud,R.静脉动脉体外膜氧合:不同插管技术的概述。 J.索拉克。 Dis。 2016,8,E875–E885。 [CrossRef]39. 吉罗(R.班菲Bendjelid,K.在ECMO静脉插管放置中应强制执行超声心动图检查。欧元。心脏J.影像学杂志2018,19,1429-1430。 [CrossRef]40. 阿罗约Bendjelid,K .;罗伯特·埃巴迪(H.里加蒙蒂;西恩哈特(N. Giraud,R.疑似股骨股静脉静脉体外生命支持中的动脉痉挛。 ASAIO J.,2017,63,e35-e38。 [CrossRef]41. 法国复活委员会,C。法国兴业银行D'anesthesie等,R。法国兴业银行法国法语学校de Chirurgie Thoracique等,C。法兰西大学医学会法国兴业银行;法语国家复活和应急小组法国兴业银行;法兰西复兴社会学院,F。在难治性心脏骤停中使用体外生命支持的适应症指南。法国卫生部。安麻醉神父雷尼姆2009,28,182–190。 [CrossRef]42. 金俊杰;Jung J.S .; Park,J.H .; Park,J.S .; Hong,Y.S .;李世伟一项倾向匹配的研究:预测院外心脏骤停患者良好神经系统结局的体外心肺复苏最佳过渡时间:一项倾向匹配研究。暴击Care 2014,18,535。[CrossRef] [PubMed]43. 雷诺兹J.C. Frisch,A .; J.C. Rittenberger; C.W. Callaway。院外心脏骤停后复苏努力的持续时间和功能结局:我们什么时候应该改用新疗法?发行2013,128,2488-2494。 [CrossRef] [PubMed]点击:查看更多医学文章 使用文档翻译功能 使用图片翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-02-02 20:19:57
221
常在火星上发现的矿物发现于南极冰层深处
Mineral often found on Mars discovered deep in Antarctic ice常在火星上发现的矿物发现于南极冰层深处by Bob Yirka , Phys.org鲍勃·伊尔卡(Bob Yirka),Phys.org The morphology of mineral grains in deep TALDICE investigated through SEM. Credit: Nature Communications (2021). DOI: 10.1038/s41467-020-20705-z通过扫描电镜(SEM)研究了深层TALDICE中矿物晶粒的形态。图片来源:Nature Communications(2021)。 DOI:10.1038 / s41467-020-20705-z An international team of researchers has found evidence of the mineral jarosite in ice cores extracted from Antarctica. In their paper published in the journal Nature Communications, the researchers describe how the discovery came about and why they believe it could bolster theories regarding the presence of the same mineral on the surface of Mars.一个国际研究人员小组发现了从南极洲提取的冰芯中的矿物黄钾铁矾的证据。在发表于《自然通讯》杂志上的论文中,研究人员描述了这一发现是如何产生的,以及为什么他们相信该发现可以支持有关火星表面存在相同矿物的理论。 Jarosite is very rarely found on Earth—it is generally seen in mining waste that has been exposed to air and rain. The researchers with this new effort were not looking for it in their ice cores—they were focused on minerals in deep ice cores that might help to better understand ice age cycles. But when they came across the yellow- brown mineral, their interest was piqued. X-ray absorption testing and electron microscopy showed it be jarosite.黄铁矿在地球上很少见-通常在暴露于空气和雨水的采矿废物中看到。做出这项新努力的研究人员并没有在冰芯中寻找它,而是专注于深冰芯中的矿物质,这些矿物质可能有助于更好地了解冰龄周期。但是,当他们遇到黄褐色的矿物时,他们的兴趣激起了。 X射线吸收测试和电子显微镜显示它是黄钾铁矾。 The researchers suggest the mineral formed in ice pockets that also held small amounts of dust. Under the ice, they had eroded, the researchers noted. The finding brought to mind another site where jarosite is found—the surface of Mars. It was found there by the Opportunity rover back in 2004 and has been found to be abundant. Finding jarosite on Mars created a lot of excitement at NASA and around the world, because prior research had shown that water must be present for jarosite formation.研究人员认为,冰袋中形成的矿物质还含有少量的灰尘。研究人员指出,它们在冰下侵蚀了。这一发现使我想到了另一个发现黄钾铁矾的地点-火星表面。早在2004年,Opportunity流浪者就在那发现了它,并且发现它很丰富。在火星上发现黄钾铁矾在NASA和全世界引起了极大的兴趣,因为先前的研究表明,形成黄钾铁矾必须存在水。 The discovery of jarosite on Mars led scientists to come up with theories to explain how it might have originated. Some suggested it might have been left behind as salty water evaporated. Others suggested that Mars might have been covered by a massive ice blanket billons of years ago. They further suggested that jarosite could have formed in ice pockets. That would have been possible, they noted, if the ice blanket grew slowly with dust blowing onto it. At the time the theory was formulated, it was difficult to test because it had never been found to form that way anywhere else, including Earth. 在火星上发现的黄钾铁矾导致科学家提出了一些理论来解释其起源。一些人认为,咸水蒸发后可能会留下来。其他人则认为,火星可能在数年前被巨大的冰盖巨石覆盖。他们进一步认为,黄钾铁矾可能在冰袋中形成。他们指出,如果冰盖缓慢地生长并且上面吹着灰尘,那将是可能的。在提出该理论时,很难进行测试,因为从未发现它能以其他方式形成,包括地球。 Now that jarosite has been found deep in Antarctic ice, the latter theory will likely become the most prominent. The researchers note that the theory still has one glitch—the ice in Antarctica contains very small amounts of jarosite—on Mars, the mineral is found in large slabs. The researchers suggest that the difference might be explained by the huge amounts of dust on the Martian surface.现在已经在南极冰层深处发现了黄钾铁矾,后一种理论可能会成为最突出的理论。研究人员指出,该理论仍然存在一个小问题-南极洲的冰中含有很少量的黄钾铁矾-在火星上,这种矿物存在于大平板中。研究人员认为,这种差异可能是由火星表面上大量的尘埃所解释的。点击:查看更多太空探索文章 查看更多生物学文章 使用PDF文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-01 19:20:46
187
极有希望在下一代能源材料中形成的极化子
SLAC国家加速器实验室的 Glennda Chui 上图显示了极化子-消除了材料原子晶格中的扭曲-在有前途的下一代能源材料铅杂钙钛矿中。SLAC和斯坦福大学的科学家首次观察到这些畸变的“气泡”是如何在电荷载子周围形成的,这些载流子是由光脉冲释放的电子和空穴,在此处显示为亮点。这个过程可能有助于解释为什么电子在这些材料中如此高效地传播,从而导致高太阳能电池性能。图片来源:Greg Stewart / SLAC国家加速器实验室 极化子在材料的原子晶格中短暂地扭曲,这些畸变在移动的电子周围以几万亿分之一秒的速度形成,然后迅速消失。它们虽然短暂,但它们会影响材料的行为,甚至可能是用铅钙钛矿制成的太阳能电池在实验室中获得极高效率的原因。现在,能源部的SLAC国家加速器实验室和斯坦福大学的科学家首次使用该实验室的X射线激光观察和直接测量极化子的形成。他们今天在《自然材料》中报告了他们的发现。斯坦福大学材料与能源科学研究所(SIMES)的研究人员亚伦·林登伯格(Aaron Lindenberg)表示:“由于这些材料的高效率和低成本,它们已经席卷了太阳能研究领域,但人们仍在争论它们
2021-01-05 18:05:00
221
肥胖相关炎症中的单不饱和脂肪酸(结论)
肥胖相关炎症中的单不饱和脂肪酸(上)6.3. 细胞模型-外源MUFA的作用油酸可保护HepG2细胞(人类肝癌细胞系)免受SFA诱导的脂毒性,降低ER压力,ROS生成以及激活炎症标志物(NLRP3,IL-6,MCP-1和IL-1β)[149] ]。在原代鼠肝细胞中,源自LD的细胞内MUFA与SIRT1(NAD依赖性蛋白脱酰基酶sirtuin /1 /沉默信息调节剂1)结合,从而通过PGC-1α激活PPARα。油酸也是直接的PPARα激动剂[150]。这些机制抑制了NF-κB的活性(图3)[151,152],至少部分解释了MUFA对肝脏炎症的吸收。在3T3-L1鼠前脂肪细胞系中,油酸处理可能通过PPARγ激活[154,155]增加脂联素基因的表达[153]。脂联素诱导IL-10分泌,抑制IL-6和TNF-α分泌[153],具有减轻体内局部炎症的潜力。脂联素还可以通过增强M2巨噬细胞极化来减少外周炎症(图3)[154-161]。用HFD喂养的小鼠制备的骨髓来源的巨噬细胞具有炎前特性,包括巨噬细胞M1极化和IL-6和TNF-α分泌增加(图3)[162]。用棕榈油酸酯处理这些巨噬细胞可以将巨噬细胞的极化转变为M2(图3)[162]。棕榈酸酯还激活AMPK,导致NF-κB核易位减少(图3)。这会增加一些抗炎因子的表达,例如MGL2,IL-10,TGFβ1和MRC1 [162,163]。小鼠脂肪基质血管部分和含油酸酯的骨髓原代培养物的孵育可抑制LPS诱导的IL-1β分泌[45,164]。在这种情况下,AMPK被激活,进而抑制了NLRP3的激活(负责IL-1β的成熟)(图3)[45,164]。关于原代大鼠胰岛细胞的报道也类似[165]。MUFA在其他几种细胞系中也显示出保护作用。例如,油酸盐可保护小鼠肌肉C2C12细胞免受棕榈酸酯诱导的胰岛素抵抗和内质网应激[166]。在源自肾上皮的小鼠足细胞中,SFA激活与内质网应激相关的细胞死亡途径。油酸盐可逆转这种作用[167]。在与棕榈酸酯相比,棕榈酸酯可降低人类内皮EAHy926细胞系的促炎性IL-6,IL-8和MCP-1分泌,并下调NF-κB(通过PPARγ刺激)[168]。 图3.单不饱和脂肪酸具有抗炎作用。 SFA(饱和脂肪酸)激活TLR4(Toll样受体4)以诱导NF-κB(核因子-κB)核易位表3.(NOD样受体家族,含3个吡啶原)和pro-IL-1β (前白介素1β)表达,导致IL-1β分泌和巨噬细胞M1极化。MUFA(单不饱和脂肪酸)可以通过直接结合GPR120(G蛋白偶联受体120)或PPAR(过氧化物酶体增殖物激活受体)以及AMPK(AMP活化蛋白激酶)磷酸化来分别抑制NF-κB和NLRP3活化。 通过抑制巨噬细胞M1极化,MUFA增强了M2极化。该数字是通过Servier Medical ART生成的。 4. 硬脂酰辅酶A去饱和酶-1在炎症中的作用7.1.人体相关性研究鉴于SCD1是参与MUFA合成的主要酶,一些作者假设SCD1的表达和/或活性增加可能与患者炎症状况的改善有关。在一项针对年轻人的研究中[169],在SCD1基因上游的rs2060792(A / G)单核苷酸多态性(SNP)与循环中的SFA棕榈酸酯和硬脂酸酯水平之间存在明显的相关性。带有主要等位基因的欧洲女性棕榈酸酯含量较高,而硬脂酸酯含量较低。有趣的是,这种SNP与肥胖症和较高的循环促炎因子CRP水平呈正相关,特别是在女性中。在一项分析来自肥胖个体的人内脏脂肪组织的手术样品的研究中,SCD1和IL-6启动子中组蛋白甲基化(H3K4me3)的富集与BMI升高有关。这种组蛋白甲基化富集模式与较低的SCD1表达和较高的促炎性TNF-α和IL-6表达相关[170]。然而,在超重的成年人中,高棕榈酸酯水平的血浆浓度反映了SCD1的高活性,与发炎性脂肪肝疾病的发生有关[171]。 SCD1活性增加可能是由于高循环浓度的底物棕榈酸酯触发的补偿机制所致[20,172]。在这些人体研究中获得的结果并不总是表明SCD1活性与炎症之间存在严格的相关性。这表明内源性合成水平不是MUFA调节炎症状态的唯一因素。 7.2.动物遗传模型人类和动物饮食研究都明确指出MUFA对炎症状态具有有益作用。鉴于MUFA是SCD1活性的产物,这种酶的缺失会降低MUFA的利用率(并增加SFA的积累),从而导致炎症增加。缺乏SCD1的小鼠是研究内源性MUFA合成对脂质代谢和炎症过程影响的有用工具。由于自然发生的基因组缺失,所以asebia小鼠模型缺乏SCD1。如在SCD1基因敲除小鼠中一样,无足彩动物表现出眼睛发炎,皮脂腺缺乏和真皮层瘢痕内没有毛发[173,174]。在皮肤特异性SCD1基因敲除小鼠中,毛囊周围促炎基因IL-6,TNF-α和IL-1β的表达增加[175,176]。通过引起卵泡细胞死亡,这种炎症导致脱发[177]。像SCD1基因敲除小鼠一样,阿斯比亚小鼠也免受HFD诱导的肥胖,肝脂肪变性和葡萄糖耐量异常的影响[178-180]。然而,与野生型小鼠相比,它们表现出复杂的炎症特征,包括循环炎症前标志物,例如IL-6和IL-1β[181]。脂肪组织特异性SCD1基因敲除小鼠可以预防西方饮食引起的肥胖和脂肪肝[74]。与野生型小鼠的WAT相比,它们的WAT表现出更低的MCP-1和TNF-α浓度,即使它们在HFD(60%大卡脂肪,主要是猪油)上饲养时也是如此。肠上皮细胞特异性SCD1敲除小鼠的结肠和回肠内促炎性标记IL-6和TLR4升高[182]。有趣的是,富含油酸盐的饮食可以挽救这些特定于肠细胞的效应[183]。有趣的是,肠上皮细胞特异性SCD1敲除小鼠在空肠中TLR4受体的表达减少,这表明它具有抗发炎的作用[182]。肝脏特异性SCD1基因敲除小鼠的肝脏中促炎性标志物IL-1β和TNF-α升高[184]。这些基因敲除小鼠模型的脂肪生成标记ACC,FAS和SREBP-1c的表达降低。棕榈酸酯合成减少的潜力可能会减弱SCD1耗竭的炎症作用。 7.3.蜂窝模型一些研究解决了SCD1在炎症细胞模型中的特定作用。鼠前脂肪细胞3T3-L1细胞系中SCD1基因的沉默或失活加剧了SFA的作用,增加了促炎标记物TGF-β,IL-6和MCP-1的表达,并降低了抗SFA炎性IL-10 [185,186]。在EndoC-βH1人胰腺β细胞系中观察到相似的结果。沉默SCD1可加重棕榈酸酯对炎性标志物表达的脂毒性作用,有趣的是,油酸酯和棕榈油酸酯治疗可挽救这些效应[187]。孵化RAW从全SCD1基因敲除小鼠分离的原代脂肪细胞中获得的具有条件培养基的264.7巨噬细胞会降低TNF-α和IL-1β炎性细胞因子的表达[188]。小鼠原代巨噬细胞中的SCD1沉默使TLR4受体高度敏感,从而加剧了炎性细胞因子(IL-1β,MCP-1和IL-6)的基因表达[189]。 TLR4超敏性被认为是由于膜磷脂中SFA比例增加[189]。其他技术方法可以洞悉SCD1过表达的作用。在人类原代肌管细胞中,SCD1的过度表达阻止了棕榈酸酯诱导的内质网应激和IL-8基因表达[190]。间充质基质细胞(MSC)可以从患者的后骨髓中制备[191]。用T0901317(LXR激动剂)处理这些MSC细胞后,SCD1和LXRα表达增加。这种治疗减少了棕榈酸酯诱导的Caspase 3/7激活以及促炎性IL-6和IL-8的表达。当将MSC细胞与特定的SCD1抑制剂CAY10566一起孵育时,LXR激动剂的作用被消除。这表明,至少在这些患者的骨髓基质细胞中,SCD1参与了棕榈酸酯诱导的炎症和细胞凋亡的预防[191]。 最近,使用从G蛋白偶联受体120(GPR120)缺陷小鼠中分离的原代肝细胞进行了一项研究。该受体与MUFA,特别是棕榈油酸酯相互作用[192]。棕榈酸酯对GPR120的激活涉及通过降低NF-κB活性来解决棕榈酸酯诱导的炎症。有趣的是,在这些细胞中,观察到了SCD1表达与GPR120活性之间的相关性[193]。抑制细胞中的SCD1会导致炎症增加。这可能是由于较低的细胞内MUFA浓度和较高的细胞内SFA浓度共同造成的。 5. 结论如本文全文所述,饮食中的脂肪摄入对炎症具有不可否认的影响。有证据表明,通过生活方式干预可以预防慢性低度炎症。富含SFA的西方饮食可诱发慢性炎症,并增加发生与肥胖相关的代谢紊乱的风险,例如心血管疾病,2型糖尿病和肝脂肪变性。相反,地中海饮食尤其是富含油酸盐的饮食有利于抗炎,并降低了代谢综合征的发展风险。确实,人类和动物饮食研究都表明,用MUFA替代SFA可以激活有益的抗炎机制(M2巨噬细胞极化,脂肪细胞IL-10分泌,抑制NLRP3炎性体)并逆转SFA对脂肪组织的有害作用。 ,肝组织和β细胞。这里介绍的许多机制可以解释饮食中油酸盐和高水平循环MUFA的保护作用。因此,在饮食中添加MUFA可能是减少慢性炎症并随后改善总体代谢状况的潜在营养保健途径。根据膳食MUFA的有益作用,一些研究表明,抑制SCD1会加剧SFA的有害作用。这可能是由于SFA水平(SCD1底物)的增加。因此,SCD1是降低细胞内SFA浓度有利于MUFA的有趣治疗靶标。但是,其他研究表明抑制SCD1可能会产生有利的结果。 SCD1缺失可保护小鼠免受富含SFA的HFD的有害作用,甚至改善人和动物的代谢状况。在这种情况下,SCD1缺失的保护作用不能归因于生物体中的MUFA活性。实际上,我们和其他人已经表明,SCD1缺失会抑制脂肪形成[74,76,77,79,182]。这可以归因于抑制SREBP-1c的醇化,降低其转录活性[77]。SCD1活性的这一方面值得进一步研究,以更好地了解其在炎症中的特定作用。 作者贡献:G.R.然后A.L.撰写了手稿。肯德基和C.M.编辑了手稿。所有作者均已阅读并同意该手稿的发行版本。资金来源:G.R。由国家历史研究基金会(NSREC)资助,由艾登(Lueur d'espoir pour Ayden)和A.L.基金会资助。 缩略语ACC 乙酰辅酶A羧化酶AGPAT 酰基甘油3-磷酸-O-酰基转移酶AMPK AMP激活的蛋白激酶apoA-I 载脂蛋白A-1apoB-100 载脂蛋白B-100ATP 三磷酸腺苷BMI 身体质量指数ChREBP 碳水化合物反应元素结合蛋白CPT-1 肉碱棕榈酰转铁酶1CRP C反应蛋白DGAT 甘油二酯酰基转移酶DNA 脱氧核糖核酸ELOVL E超长链脂肪酸的延伸ER 内质网FABP 脂肪酸结合蛋白FAS 脂肪酸合成酶FAT/CD36 脂肪酸转位酶/分化簇36FATP 脂肪酸转运蛋白FFA 游离脂肪酸GPAT 甘油3-磷酸酰基转移酶GPR120 G蛋白偶联受体120HCD 高碳水化合物饮食HDL 高密度脂蛋白HFD 高脂饮食hMSC 人间质间质细胞HOMA-IR 胰岛素抵抗的稳态模型评估IFN-γ 干扰素IKK‐IkB 核因子κB的IκB激酶抑制剂IL-1β 白介素-1βIL-10 白介素-10IL-18 白介素-18IL-1R 白介素-1受体IL-4R 白介素-4受体IL-6 白介素-6IL-8 白介素-8LD 脂质滴LDL 低密度脂蛋白LPS 脂多糖LXR 肝X受体MCP-1 单核细胞化学吸引蛋白-1MGL2 巨噬细胞半乳糖N乙酰半乳糖胺特异性凝集素2MRC1 巨噬细胞甘露糖受体1前体mTORC1 雷帕霉素复合物的哺乳动物靶标1MUFA 单不饱和脂肪酸NF‐kB 核因子κBNLRP3 类似于NOD的受体家族,pyrin结构域PGC-1β 过氧化物酶体增殖物激活的受体1βPI3K 磷酸肌醇-3-激酶PKB 蛋白激酶BPPARa 过氧化物酶体增殖物激活的受体αPPARδ 过氧化物酶体增殖物激活的受体δPPARγ 过氧化物酶体增殖物激活的受体γPUFA 多不饱和脂肪酸ROS 活性氧种类SAT 皮下脂肪组织SCD 硬脂酰辅酶A去饱和酶SFA 饱和脂肪酸SNP 单核苷酸多态性SRB1 清道夫受体B类1型SREBP-1 甾醇调节蛋白结合蛋白-1TG 甘油三酸酯TGF-β 转化增长因子TLR Toll样环境受体TNF-α 肿瘤坏死因子-αTNFR 肿瘤坏死因子受体VAT 内脏脂肪组织VADL 超低密度脂蛋白WAT 白色脂肪组织 参考文献(只处展示部分文献)1. B.H.古德帕斯特;克里希纳斯瓦米,S。哈里斯(TB);Katsiaras,A .;Kritchevsky,S.B .;西蒙西克(E.M.);内维特Holvoet,P .;新人A.B.肥胖,区域性脂肪分布和老年男性和女性的代谢综合征。拱。实习生。中2005,165,777-783,doi:10.1001 / archinte.165.7.777。2. Sherling,D.H .; Perumareddi,P .;亨内肯斯(C.H.)代谢综合征。 J.心血管药2017,22,365–367,doi:10.1177 / 1074248416686187。3. Saklayen,M.G.代谢综合征的全球流行。 Curr。高血压。Rep.2018,20,12,doi:10.1007 / s11906‐018‐0812‐z。4. Lee,B.C .; Lee,J。肥胖诱导的胰岛素抵抗发展中脂肪组织炎症中的细胞和分子参与者。 Biochim。等等。 2014年1月,1842,446–462,doi:10.1016 / j.bbadis.2013.05.017。5. G,Grandl;Wolfrum,C.止血,内皮细胞应激,炎症和代谢综合征。 Semin。免疫病理2018年40、215–224,doi:10.1007 / s00281‐017‐0666‐5。6. Arroyo-Johnson,C .;明西(K.D.)全球肥胖流行病学。胃肠酸。临床北。上午。 2016,45,571–579,doi:10.1016 / j.gtc.2016.07.012。7. 美国安东诺普洛斯; Tousoulis,D。肥胖悖论的分子机制。心血管Res。 2017,113,1074-1086,doi:10.1093 / cvr /cvx106。8. Tchernof,A .; Despres,J.P.人类内脏肥胖症的病理生理学:最新动态。生理学。 Rev. 2013,93,359–404,doi:10.1152/ physrev.00033.2011。9. Despres,J.P .; Lemieux,I。腹部肥胖和代谢综合征。 Nature 2006,444,881–887,doi:10.1038 /nature05488。 10. Engin,AB什么是脂质毒性?进阶经验中生物学2017,960,197–220,doi:10.1007 /978‐3‐319‐48382‐5_8。11. A.吕肯(J.J. Y.Arumugam;格拉茨(J.F.);新罕布什尔州丹顿脂肪酸摄入的急性调节涉及脂肪酸转位酶的细胞再分布。 J.Biol。化学2000,275,14501–14508,doi:10.1074 / jbc.275.19.14501。12. B.Ason;卡斯特罗·佩雷斯(J. Tep,S.;Stefanni,A .; Tadin-Strapps,M.;罗迪,T。汉克迈尔,T。哈伯德,B .;萨克斯(A.B.)迈克尔·弗拉纳根(W.等。 ApoB siRNA诱导的肝脂肪变性对脂肪酸转运蛋白5(Fatp5)的丢失具有抗清除作用。脂质2011,46,991–1003,doi:10.1007 / s11745‐011‐3596‐3。13.温格,R.H。脂毒性疾病。安努礁。用。 2002,53,319–336,doi:10.1146 /annurev.med.53.082901.104057。14. Summers,S.A.神经酰胺的胰岛素抵抗和脂毒性。编脂质水库。 2006,45,42–72,doi:10.1016 /j.plipres.2005.11.002。15. 范·赫尔彭(NA)Schrauwen-Hinderling,V.B.脂质在非脂肪组织中的积累和脂毒性。生理学。行为。2008年94,231–241,doi:10.1016 / j.physbeh.2007.11.049。16. A.R. Saltiel; Olefsky,J.M.将肥胖与代谢疾病联系起来的炎症机制。 J.临床。调查。 2017,127,1-4,doi:10.1172 / JCI92035。17. Xydakis,上午案例C.C.琼斯(P.H.)霍格芬,R.C .;刘明Y;史密斯(E.O.);纳尔逊(K.W.);巴兰坦(C.M.)肥胖者的脂联素,炎症和代谢综合征的表达:通过热量限制快速减肥的影响。 J.临床。内分泌醇。代谢2004,89,2697–2703,doi:10.1210 / jc.2003-031826。18. Karczewski,J。 Sledzinska,E .;巴图罗,A .; Jonczyk,我。 Maleszko,A .; Samborski,P .; Begier-Krasinska,B。 Dobrowolska,A.肥胖与炎症。欧元。细胞因子网络。 2018,29,83–94,doi:10.1684 / ecn.2018.0415。19. 魏斯河; Dziura,J .;T.S. Burgert; W.V. Tamborlane;塔克萨里(S.E.); Yeckel,C.W .;艾伦(K.)罗珀斯萨瓦省莫里森,J。等。儿童和青少年的肥胖症和代谢综合征。N. Engl。 J. Med。 2004,350,2362–2374,doi:10.1056 / NEJMoa031049。20. Nieuwdorp,M。E.S. Stroes;迈耶斯(J.C.) Buller,H.代谢综合征中的高凝性。 Curr。 in药2005,5,155–159,doi:10.1016 /j.coph.2004.10.003。21. 丹多纳(P.) A.Aljada; Bandyopadhyay,A。炎症:胰岛素抵抗,肥胖与糖尿病之间的联系。趋势免疫。 2004,25,4–7,doi:10.1016 / j.it.2003.10.013。22. 丹多纳(P.) A.Aljada;乔杜里(A. Mohanty,P .; Garg,R.代谢综合症:基于肥胖,糖尿病和炎症之间相互作用的综合观点。发行2005,111,1448–1454,doi:10.1161 / 01.CIR.0000158483.13093.9D。23. 唐Y冯恩;徐阿兰慧英C反应蛋白和衰老。临床经验Pharmacol。生理学。 2017,44,9–14,doi:10.1111/ 1440-1681.12758。24. 加贝角库什纳,I。急性期蛋白和其他系统性炎症反应。 N. Engl。 J.Med。 1999,340,448–454,doi:10.1056 / NEJM199902113400607。25. 塞罕(C.N.)炎症的消退阶段:新型内源性抗炎和可解决脂质介体和途径。安努免疫牧师2007,25,101–137,doi:10.1146 / annurev.immunol.25.022106.141647。26. Rodier,F .; Campisi,J。细胞衰老的四个面孔。 J.细胞生物学。 2011,192,547–556,doi:10.1083 / jcb.201009094。27. Cevenini,E .;蒙蒂,D。 Franceschi,C.炎症老化。 Curr。 in临床营养食品代谢护理2013,16,14-20,doi:10.1097 / MCO.0b013e32835ada13。28. Weissmann,G。它很复杂:从Metchnikoff到Meryl Streep的发炎。 Faseb J.2010,24,4129-4132,doi:10.1096/ fj.10-1101ufm。29. 小默多克;劳埃德(Lloyd)慢性炎症和哮喘。笨蛋Res。2010,690,24–39,doi:10.1016 /j.mrfmmm.2009.09.005。30. 钱伯斯(J.C.) Eda,S .;巴塞特(P.)卡里姆(Y.汤普森(S.G.) J.R. Gallimore;佩皮斯(M.B.) Kooner,J.S。与欧洲白人相比,英国的印度裔亚洲人的C反应蛋白,胰岛素抵抗,中枢性肥胖和冠心病风险。发行2001,104,145–150,doi:10.1161 / 01.cir.104.2.145。31. 纽约州Donath;肖尔森(美国) 2型糖尿病是一种炎症性疾病。纳特免疫牧师2011,11,98-107,doi:10.1038 / nri2925。32. Hotamisligil,G.S.炎症和代谢异常。 Nature 2006,444,860–867,doi:10.1038 /nature05485。33. Murray,P.J。巨噬细胞极化。安努生理学家。 2017,79,541–566,doi:10.1146 /annurev‐physiol‐022516‐034339。34. Chinetti-Gbaguidi,G .; Staels,B。代谢紊乱中的巨噬细胞极化:功能和调节。Curr。 in脂质体。2011,22,365–372,doi:10.1097 / MOL.0b013e32834a77b4。35. 黄胜Rutkowsky,J.M .;斯诺德格拉斯(R.G.)小野摩尔,K.D .;施耐德(D.A.);纽曼(J.W.);亚当斯(美国) Hwang,D.H.饱和脂肪酸可激活TLR介导的促炎信号通路。 J.脂质研究。 2012,53,2002–2013,doi:10.1194 / jlr.D029546。36. Sun,S.C.免疫和炎症中的非规范性NF-κB途径。纳特免疫牧师2017,17,545–558,doi:10.1038 / nri.2017.52。37. 基尔万,上午;莱尼根(Yen。俄勒冈州奥赖利; F.C. McGillicuddy;罗氏(Roche)代谢炎症的营养调节。阅读更多文章免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2020-12-31 16:01:29
384
大火前后的巴黎圣母院大教堂的声学调查
布莱恩·F·G。卡茨*和安东尼·韦伯法国巴黎CNRS Sorbonne大学Jean Le Rond d´Alembert研究所UMR7190,法国; antoine.weber@dalembert.upmc.fr*通讯:brian.katz@sorbonne-universite.fr 收到:2020年9月27日;接受:2020年10月29日;发布时间:2020年11月6日摘要:巴黎圣母院大教堂是世界上最著名的礼拜场所之一。它的体积大,加上相对裸露的石头结构和大理石地板,导致相当长的混响时间。大教堂在2019年遭受大火,主要损坏了屋顶和拱形天花板。尽管此空间臭名昭著,但有关该空间的声学参数的已发布数据很少,这些数据并不一致。恢复了1987年的存档测量记录,发现其中包括几次气球爆炸。 2015年,针对虚拟现实项目进行了测量会议。这两个阶段的结果之间的比较显示,在开火前,混响时间略有减少(8%)。火灾发生1年后,最近在施工现场进行了测量。与2015年的数据相比,混响时间显着减少(20%)。本文介绍了这些测量的初步结果,并提供了有关这具历史悠久的朝拜空间在2019年大火之前和之后的声学记录。 关键词:室内声学测量巴黎圣母院;混响时间文化遗产1. 介绍礼拜场所的声学已成为数十年来研究的主题。由于其巨大的规模,这些空间已在多个世纪以来用于文化和宗教活动。这样的空间经常表现出声音异常(例如,耳语的画廊和耦合的体积)。吉隆(Girón)等人综述了这项研究的重要部分。 [1],讨论了不同的实验程序,结果及其理论解释。在具有重要历史意义的空间中进行了许多著名的研究:圣彼得大教堂[2],圣索非亚大教堂(Haghia Sofia)和苏莱曼清真寺(SüleymaniyeMosque)[3],圣约翰洗礼池[4],圣日耳曼德佩雷斯修道院[5]和圣保罗大教堂[6]。巴黎圣母院大教堂(CathédraleNotre-Dame de Paris)是世界上最著名的礼拜场所之一。这座中世纪大教堂被广泛认为是法国哥特式建筑的最好典范之一。大音量加上其巨大的裸露石灰石和大理石表面,导致长的混响时间。尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。巴黎哥特式大教堂建于12世纪末,成为欧洲音乐创作的象征地,历史学家称其为“巴黎圣母院”。文件证明了这一时期的音乐活动,并且可以认为这种巴黎复音的惊人发展与1182年新合唱团举行的礼拜式组织相吻合。巴黎圣母院大教堂的法令颁布于1198年和1199年,主教Eudes de Sully证明了大众,办公室和贝纳迪卡莫斯·维斯珀多米诺骨牌的两种,三种和四种声音的实践[7,8]。 我们很幸运有一位英国校长撰写的历史性文字[9],描述了这座大教堂合唱团1275年左右的音乐习惯,在此之前,器官和半即兴的传导性的声音可能会朝后殿升起在各种手稿中都有记载,这些手稿证明了Magnus liber organi的丰富性[10](巴黎圣母院在12世纪和13世纪之交时使用的拉丁语“器官大典”)。几个世纪以来,这种方法不断发展,随着格里高利旋律的出现,这些旋律逃离了封闭的合唱团,或者随着游行队伍而流通,风琴,铃铛的声音和法佛对位的复调作品混合在一起。 “ 1498年任命安托万·布鲁梅尔(Antoine Brumel)带来了新鲜的空气:费拉拉公爵未来的合唱团指挥官带来了佛朗哥-佛兰德和弦的最好和最新的复音” [11]。音乐史将铭记安德烈·坎普拉(AndréCampra),让·弗朗索瓦·拉洛埃特(Jean-FrançoisLalouette)或让·弗朗索瓦·莱苏厄尔(Jean-FrançoisLesueur)等伟大的大师和作曲家的名字,他们在革命时期后组成了著名的加冕典礼,供拿破仑进入大教堂1804年,以及加冕大礼的各种作品。2019年4月15日,巴黎圣母院大教堂的阁楼发生火灾。由此产生的损坏摧毁了屋顶,并在尖顶和其他碎屑掉落时在拱形天花板上留下了三个大孔。随着修复工作的继续,在大教堂的结构和材料方面进行了大量的记录工作,这项工作介绍了近期的工作,以记录大教堂的室内声学状况,对火灾前和火灾期间采集的数据进行了分析。重建过程。这项工作的某些要素先前已经在科学会议上提出过[12]。2. 已发布的声学数据尽管该空间声名狼藉,但很少有已发布的有关该空间的声学参数的数据示例。 Hamayon [13]提出了混响时间估计作为八度频段的函数[125至4000 Hz:8.5、8.0、7.5、6.0、4.5、2.7 s]。 Mercier [14]提出的建议略有不同混响时间值[125至4000 Hz:8.5、8.2、6.5、6.2、4.7、2.5 s]。两项研究都仅介绍了混响时间,而没有任何参考或测量协议信息。3. 材料和方法:20世纪和21世纪的测量 3.1. 1987年的历史数据档案记录(1987年)是从有关一个新器官的声学研究中恢复的[15],其中包括几个气球破裂。测量协议—图1a显示了1987年带源-接收器(SR)位置的测量的测量计划。尽管采用了使用不同刺激的多种技术,但由于缺少刺激细节(例如,消声信号,扫描刺激参数),仅可利用气球爆裂源。从源位置1记录了三个气球爆炸,从源位置2记录了1个气球爆炸。这些位置对应于大教堂的“相对”源位置[16],其中S2在变位子和祭坛区域的中心附近。 S1在讲坛附近,更靠近公共区域的中心。测量设备的输入-用13个全向麦克风记录声音,这些麦克风连接到多轨线对线录音机(Tascam)。虽然不是理想的全向声源,但气球爆裂在某些情况下还是有用的工具,它提供了便携式脉冲源[17]。记录从模拟磁带上数字化。图1.巴黎圣母院大教堂(a)1987,(b)2015和(c)2020届会议的测量计划。位置居中于编号源(S#(红色))和麦克风(#(蓝色和绿色))标签下,或在所测量的网格过于密集的点处。 2020年计划(c)还在阴影区域指示了无法放置测量设备的脚手架(黄色),人为禁止区域(红色)和禁止区域的受阻碍/损坏的地面(蓝色)。3.2. 2015年的详细测量在2019年大火发生前的将近4年的2015年4月13日晚上,在一次小型音乐会演出之后进行了一系列声学测量。测量协议-图1b显示了测量计划,突出显示了2015年测量的S-R位置(请参见图2a中的照片)。源位置反映了1987年的测量结果,以及代表合唱团的S3和1987年测试的S4,尽管在进行测量后没有发现气球爆裂。在2个正弦扫描的三个测量组中,执行了麦克风1–8更改位置的操作(高度为1.5 m,这些麦克风的更改位置由测量位置后面的字母表示)。由于外部噪声过大,首次测量重复进行了两次,共87次,形成了4组测量值。麦克风9-16悬吊在天花板上(88层上方7 m,以捕获混响场供唱片工程师用于音乐会录音),因此89保持在同一位置,因此记录了八个类似的RIR。这些重复的90次测量允许研究随时间变化的声学响应的稳定性,其中91次解决了温度变化的细微影响[18]。在最后一次扫描测量之后,在每个源位置记录一个气球爆炸,而接收器在最终位置。(a)(b)图2.(a)2015年的状况照片,突出显示了测量期间测量设备,地毯滑道和小型音乐会立管; (b)2020年,突出显示在测量过程中由遥控机器人,障碍物和中殿的总体空状态拉动的麦克风三脚架。测量设备的输出-音频输出被发送到放大器(SAMSOM,美国Servs120a型,希克斯维尔),并依次发送到四个微型十二面体声源(三博士,3D-032型,日本东京)。信号-激励信号基于扫频正弦法。扫描频率从20到20,000 Hz,在20 s内呈指数增长。但是,由于这些特定扬声器的频率响应,在250 Hz八度频段以下的能量不足,无法进行分析。使用DAW软件Reaper和声卡(RME,Fireface 800,德国海姆豪森,德国)以44.1 kHz的采样率播放扫描。测量设备的输入-混响信号是由两个测量链记录的,因为测量的会话是与音乐会录音设备一起进行的。(I)用5个全向麦克风(4个DPA(丹麦Alleroed),4006型(1-4)和1个Schoeps(德国卡尔斯鲁厄)MK5型全向麦克风(5)以44.1 kHz的采样率记录扫描。 ,1个虚拟头(KU-80,配备DPA 4060)和1阶Ambisonic麦克风(Core Audio,Tetramic,Teaneeck,NJ,美国),所有这些都使用声卡(RME,Fireface 800)录制。 )使用其他11个全向麦克风(6个DPA 4006型(11–16),5个Schoeps MK5型全向麦克风(6–10))和声卡(RME)以48kHz的采样率记录扫描,Micstacy)。3.3. 2020年重建后大火的测量准许进入重建现场,并于2020年6月30日进行了声学测量。由于工作现场的限制,只能进入某些区域。由于存在掉落碎片的风险,中殿和中庭已禁止人员进入,如图1c所示。链节/坛大理石地板的中央部分被尖顶掉落损坏。合唱团区域杂乱无章,由救援队整理,因此完全无法进入。许多侧面祭坛已被用来存储物体。还安装了用于移除器官的脚手架和围绕中殿的保护屏障(建筑围栏和腰高的穿孔金属板)。见图2b中的照片;在线(https://youtu.be/YLi7ASosKvw)上有一段简短的视频记录了测量会话。测量协议-图1c显示了测量计划,突出显示了2020年测量的S-R位置。在给定访问限制的情况下,选择扬声器的源位置S1,使其尽可能接近先前测量中使用的位置。源位置S2用于手持式脉冲源,因为这是最接近S1的位置。遥控机器人(用于隧道检查)被用来拉动安装在三脚架上的麦克风。麦克风位置1-5代表第一测量轨迹。由于剩余的时间,机器人的返回轨迹(位置6-19)允许更密集的分布。从位置S1开始进行抽奖。测量设备的输出-声源是电池供电的十二面体声源(Look Line,S103 ACDC,意大利Massa Finalese),配备有自己的内部放大器和扫频发生器,远程控制,位于声源位置S1。激励信号是内部20 s扫描正弦波。在禁区的极限处,从源位置S2进行了几次补充冲动刺激,手枪开枪射击和气球爆裂。测量设备的输入-混响的信号记录在各种便携式记录设备上,以限制由于机器人操作而引起的布线和混乱。除了使用一对MS(Zoom,H6)外,还使用两个与便携式录音机(Zoom,H6,东京,日本)连接的全向麦克风(Bedrock,BAMT1 1/2”,荷兰代尔夫特)进行录音。将两个3D麦克风(Core Audio,Tetramic和Octomic)记录到便携式录音机(Zoom,F8)上。最后,使用了两个自主3D麦克风(Zoom,H3-VR),一个与360°摄像头(三星,Gear360,韩国首尔)配合使用。源/接收器的高度为1.7 m,受限于用于放置设备的带轮三角架设备。3.4. 后期处理随后的反卷积扫描正弦刺激,采样率转换和后处理步骤在MATLAB中执行。根据我们的内部MATLAB IR分析(IRA)工具包,根据ISO 3382标准对RIR进行了分析[19]。3.5. 建筑细节巴黎圣母院长约130 m,宽48 m,高35 m。在与巴黎圣母院办公室的电话交谈中,确认在几个区域安装了地毯滑道,并且在与前两个海湾相邻的两个礼拜堂(侧面壁or或海湾)中增加了两个确认亭。在这段时间里因此,1987年和2015年之间的区别主要是安装了地毯滑轨(见图2a和3a)。从2015年到2020年,大火后的主要区别是拆除地毯滑道,拆除长椅和拱形天花板上的孔。图3b显示了修复团队在天花板上报告的主要孔洞。使用2D投影(忽略高程拓扑),建筑图纸中的孔大小估计为263 m2。根据上述尺寸,这相当于包围盒表面积的1%。(a)(b)图3.巴黎圣母院大教堂的示意图突出了特定的表面。 (a)突出显示座位位置(黄色)和增加的地毯流道(红色)的计算机模型; (b)指出拱形天花板(2020)中主要孔洞(红色)的建筑图。4. 测量结果 4.1. 声学参数由于三个测量会话期间信源/接收器位置的变化以及2020年测量条件的巨大差异,此处介绍的初步分析重点是混响时间测量,而不是对本地建筑特征更敏感的参数。在所有三种测量条件下,通过全向麦克风计算平均混响时间(T20),如图4a所示。图4.接收机平均混响时间汇总,衰减曲线示例和耦合体积分析,(a)具有标准误差棒的全向麦克风的平均混响时间(T20)。 2020年的结果显示了扫掠刺激(S1)和脉冲源枪击(S2,Rec位置1-5)的结果; (b)八度带滤波的RIC衰减,标准化,优化的SNR截断,2020扫描激励数据集的示例; (c)全斜率衰减500Hz-八度频带分析分布,显示RIC衰减曲线中所识别弯曲点的早期和晚期混响时间以及相对时间(BPt)和电平(BPdB)([20],以获得参数详细信息)。带刻度的箱线图显示了数据分布的中位数,95%置信区间,第25和第75个百分位数。 2020年测量协议采用了非同步音频输入/输出设备。虽然设备之间精确时钟速率的差异可能会导致解卷积信号的时间失真,但Hak和Hak [21]已表明,与MLS信号相比,这种误差对扫频刺激的影响较小。另外,在该研究中发现典型的时钟误差足够小,以致混响时间的预期偏差将小于百分之几。为了验证异步措施,还从源位置S2计算了2020年脉冲源枪射击的混响时间。结果表明,两种测量方法之间的差异在不同位置和频率的标准误差范围内有所不同,除了250Hz频段显示稍高的值(增加7%)和125 Hz频段缺乏足够的分析能量。从整个测量时段的混响时间来看,从1987年到2015年平均降低了8%。2015年和2020年之间的比较显示,整个频段的降低显着得多,T20的平均降低了20%。仔细检查RIR可以提供其他信息。图4b中显示了用于计算上述房间声学参数的RIC示例。衰减曲线显示出一个陡峭的阶跃或“悬崖”响应,正如在露天剧院中所观察到的[22]。考虑到除了光滑的空地板以外没有近端反射表面,这是合理的。在响应的较早和较晚部分之间,衰减率会出现一些细微变化,这表明体积行为呈轻微耦合。使用行进线多斜率分析方法对此进行了进一步分析[23,24]。为简便起见,此分析仅限于500 Hz倍频程滤波的RIR,并使用可比较的源和接收器位置与2020年缩小的测量区域将2020年的测量结果与2015年的子集进行比较。此方法除了可以描述时间和水平上的弯曲点外,还可以估算RIC的早期和晚期衰减率。相对于RIR发作。由于耦合体积衰减的行为随复杂体系结构中的源和接收器位置而变化[25],因此将比较每个参数的结果分布,比较2015年和2020年的RIR,比较下半部分的源和接收器位置中殿(两个数据集中的共同测量区域)。非线性衰减分析的结果(如图4c所示)反映了如图4a所示的混响时间的总体减少,同时也突出了存在非线性衰减时使用ISO参数的问题。结果显示,早期和晚期衰减率均下降,表明主要和次要“体积”均减小。在Notre-Dame的情况下,对不同声音音量的界定不如在耦合混响音乐厅设计中那样明显和明显。但是,由于其较高的天花板,可以将Transept与其他空间完全不同,而侧面区域(Transept除外)具有多个水平。由于拱形天花板中的孔位于收发器区域内(图3b),但是其中一个孔位于源/接收器区域上方,因此可以想象这种损坏会影响多个声学“体积”。在这些体积中衰减率的降低还导致弯曲点时间的减少,并在较小程度上降低了水平,并且应注意,所有这些参数都与声耦合条件有关。 2015年情况的后期混响时间的可变性可能归因于空间的复杂性以及各种声学区域,这不仅导致了简单的双斜率衰减,而且导致了更高阶的耦合。需要进行进一步的分析和测量以进一步检查该假设。最后,根据Luizard等人的观点,考虑可感知的可检测性。 [20],耦合条件下早期衰变率的平均正差(JND)约为7%至10%,是晚期衰变的两倍。同样,BPt的JND约为15%到30%,涵盖了此处观察到的差异。这样,可以确信地说声学条件的差异是清晰可听的。4.2. 空间分析空间房间脉冲响应(SRIR)可用于房间声学的比较方向分析。这里选择的方法是一种参数化方法,即空间分解方法(SDM)[26]。基于这样的假设,声场可以描述为一连串的平面波,因此SRIR可以分解为一组离散的压力值及其对应的到达方向(DOA),即图像源为归因于每个时间样本。为此,将一个以目标样本为中心的小时间窗口应用于SRIR,并通过最小二乘解估计到达时间差(TDOA)的DOA。理想情况下,使用阵列中心的全向脉冲响应来分配压力值。该方法已用于音乐厅SRIR的分析和声音化[27],也用于其图形表示[28]。这些工具在MATLAB软件包SDM Toolbox [29]中实现。SDM分析应用于使用相同3D四面体麦克风阵列进行的2015年和2020年测量。使用A格式信号(代表接近重合心形麦克风的四面体阵列)估算DOA。对于所使用的麦克风,将分析窗口设置为最小允许大小,该大小是脉冲通过阵列传播所需时间的两倍,对于所使用的麦克风而言,大约为0.4毫秒。为了获得麦克风中心的压力值,这是SRIR的图形表示所必需的,使用了后处理的B格式全向W通道信号,因为这种分配应应用于与方向无关的RIR。图5中显示了类似的源-接收器对位置的中值平面和侧面平面的结果。需要注意的是,在2020年,没有座位,地板空着。相比之下,2015年既有长椅,也有一些舞台上升器,椅子和乐谱架代表着音乐表演(见图2a)。在比较这些结果时,可以进行一些观察。(a)(b)图5. SDM分析显示了从0 ms到[10,50,100,200,300,500,1000] ms的累积能量极性分布曲线,带通滤波了100 Hz至5000 Hz,滑动平均值为5°。指示了源位置(红点)。 (a)SDM分析:状态2015,Src S2–Rec 1c; (b)SDM分析:状态2020,Src S1,建议16。从CNRS/MC为修复巴黎圣母院而采取的科学行动的数字平台上获得的纵向截面,来源:Andrew Tallon进行的3D激光扫描(2016)。关于直接声音,2015年显示的声音既局部又清晰(略微升高,这与它的位置以及当时的声源都升高相对应)。地板反射不可见,可能是由于椅子和长椅的存在。到2020年,直接声音“波瓣”变得更宽广,不那么尖锐。检查侧视图图,直接声音(实际上是响应的初始0 ms到10 ms窗口)呈现出略微负向的升高。这可能是由于平坦的地板空了,在10毫秒的分析窗口内对地板的强烈反射进行了计数,从而降低和扩大了响应的早期部分。关于累积能量,在2015年,能量从各个方向相当平稳且均匀地增加,如后续能量轮廓曲线之间的规则径向间距所示,最大增加幅度为100至200 ms,因此反射以35至70的路径差到达米后的直接声音,主要归因于拱形天花板。横向能量的首次增加是在直接声音到达后的10到50毫秒内发生的,这与中殿中的列行以及侧阳台的反射相吻合。在平面和截面上,包含0到1000 ms的最终分析窗口在-10 dB的相对水平下相当圆。相反,如先前的分析所述,2020年的结果显示,在初始时间窗口之后,能量的阶跃函数降低更多,这表明在整个时间(尤其是在垂直方向)上都缺乏随时间的渐进反射累积。在所有方向上平均的200到1000毫秒之间的相对累积水平为2dB,比2015年的结果低2dB。5. 讨论与未来工作由于[13,14]中的数据与2015年的测量结果相当,因此可以得出结论,导致更短混响时间估计的变化是在1987年至1996年之间进行的。由于巴黎圣母院大教堂的体积相当大,混响时间差必须是实质性变化的结果。还可以考虑大气条件影响混响时间结果的可能性。然而,由于温度和相对湿度主要影响1000 Hz以上的混响估计[30],因此可以将其排除为减少混响时间的原因。因此,地毯跑步者可能是候选人。自2019年毁灭性大火以来,混响时间的减少显而易见。使用扫频正弦波和脉冲源以及相对近端位置都观察到相同的差异。导致T20急剧降低20%的建筑元素仍有待验证。非线性衰减率或耦合声量分析突出了这样一个事实,即变化的规模很大,影响了大教堂的不同区域,为此,拱形天花板上的孔可能是至少起重要作用的候选对象。后续工作将需要确定火灾损害相对于临时安装位置和残留杂物的声学影响。根据2015年的测量结果创建并校准了巴黎圣母院的几何声学模型,并根据2013年4月24日的音乐会表演记录[31],制作了虚拟的音乐会重建模型[31],未来大教堂的声学研究工作可以使用此计算机模型,最近的测量结果和模拟来使模型适应建筑物的发展状态。正如最近的研究表明,数值模拟用于研究复杂和耦合的声学条件[24]以及感知生存力[32]的可靠性一样,这种几何声学分析工作在大教堂中可以认为是可靠的。最初的工作将集中在2020年的火后状态,以归因于各种变化的声学影响。这些结果将提供给重建团队,然后可以将该模型进一步用于评估项目期间建筑重建建议的声学影响。声学模型可用于研究重建过程中可能的演化,其自850年前建造以来,还可用于探索巴黎圣母院的声学演化。几个世纪以来,大教堂的许多元素发生了变化,从法国大革命期间发生的各种建筑翻新和破坏到用于不同活动的各种装饰,无论是宗教的政治,政治以及整个季节,巴黎大教堂圣母院的音响效果在整个历史上都不是一成不变的,而是其环境和人类占领的不断发展的无形产物。结合历史研究成果,声学模型和相关的虚拟模拟可用于探索和体验这些先前的状态[33]。作者贡献:概念化,B.F.G.K.和A.W .;方法学,B.F.G.K.和A.W .; B.F.G.K.软件;验证,B.F.G.K。和A.W .;形式分析,B.F.G.K。和A.W.; B.F.G.K.调查和A.W .;资源,B.F.G.K.;数据策划,B.F.G.K .;写作-原始草案准备,B.F.G.K。和A.W.;写作-审查和编辑,B.F.G.K。和A.W .;可视化,B.F.G.K.和A.W .;监督,B.F.G.K .; B.F.G.K.项目管理;资金获取,B.F.G.K.所有作者均已阅读并同意该手稿的发行版本。资金来源:这项工作的部分资金来自“尚蒂尔圣母大学”,而CNRS跨领域和跨学科研究计划(MITI)也投入了资金。欧盟JPI文化遗产项目PHE提供了额外的支持,以探索建筑声学和音景的文化遗产。这项工作的2015年阶段部分由法国ECHO项目(授权号ANR-13-CULT-0004),echo-projet.limsi.fr和BiLi(授权号FUI-AAP14,www.bili-project)资助.org)。致谢:特别感谢巴黎圣母院的工作人员在测量过程中的协助和耐心。我们还要感谢MichèleCastellengo提供了1987年音乐实验室的原始数据录音,该录音是应文化部长的要求而进行的。感谢2015年测量期间Bart Postma,Julie Meyer和Jean-Marc Lyzwa(CNSM)的协助。特别感谢Tapio Lokki对SDM分析的讨论,以及FrédéricBilliet对Notre-Dame音乐史的贡献。最后,我们要感谢Escadrone在租用2020年测量中移动设备所需的机器人方面的帮助和指导。 参考文献可在原文中查看点击:查看更多分类文章 免费试用文档翻译免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:MDPI
2020-12-25 18:30:44
309