福昕翻译

>

翻译学堂

>

头颈部肿瘤的转化洞察力和新的治疗观点(总结)

>

头颈部肿瘤的转化洞察力和新的治疗观点(总结)


5.4. 自动取款机/自动取款机

ATM(共济失调毛细血管扩张症突变)和 ATR(共济失调毛细血管扩张症和 Rad3 相关)在细胞周期调节和 DDR 中发挥关键作用,特别是通过 CHK1 和 CHK2 磷酸化 [59]。在 HNC,4-10% 和 1-16% 的病例分别以 ATR 和 ATM 体细胞突变为特征 [60]。与其他 DDR 抑制剂一样,ATR/ATM 靶向药物显示出化疗和放疗致敏作用,导致初步临床经验作为单一疗法或联合用药 [61]。 M6620(以前的 VX-970)是一种一流的 ATR 抑制剂,目前正在 HPV 阴性 HNSCC 的 1 期试验中进行研究(NCT02567422)。 AZD6738 是另一种选择性 ATR 抑制剂,最近被证明可在体外增强 HPV 阴性和 HPV 阳性 HNSCC 的放疗反应 [62]。 AZD6738 加奥拉帕尼的临床试验目前正在 HNC 中进行(NCT02264678),另一项基于生物标志物的研究最近已完成(NCT03022409)。


5.5. CHK1 / 2

CHK1,单独或通过募集 RAD51,连同 CHK2(及其与 p53 的相互作用),是 DDR 系统的主要组成部分 [63,64]。考虑到许多临床前研究证实了 CHK1/2 在 p53 缺陷细胞中的致敏作用,并且在 HNSCC 中存在高 Tp53 突变率,CHK1/2 通路正在成为这种情况下有前景的新型 DDR 抑制剂[ 59,65]。 Prexasertib 是一种CHK1/2 抑制剂,主要通过下调 NOTCH 信号靶基因(NOTCH1、NOTCH2 和 NOTCH3)及其相关配体来降低 HNSCC 细胞系联合顺铂的体外存活率,有或没有 RT (JAG1、JAG2、SKP2、MAML2 和 DLL1)。此外,在用 prexasertib、顺铂和放疗处理的 HPV 阳性和 HPV 阴性小鼠异种移植物中,在体内观察到显着的肿瘤生长延迟 [66]。 prexasertib 联合顺铂和西妥昔单抗治疗晚期 HNSCC 的 1期临床试验已经完成,等待结果(NCT02555644)。


5.6. WE1

WEE1 抑制导致细胞过早进入有丝分裂阶段,作为 CHK1 抑制剂,这种效应在 p53 缺陷细胞中普遍存在 [67]。 Advosertib (AZD1775) 是一流的 WEE1 抑制剂,目前正在对不同癌症类型的后期试验进行研究。其在 HNC 中的活性在联合策略中进行了探索,目的是加强多种化疗和放疗 [68]。在新辅助 HNC 患者的 1 期临床试验中,adavosertib、顺铂和多西他赛的三联疗法已被证明是安全且可耐受的 [69]。此外,正如其他 DDR 抑制剂所述,一些证据表明这些药物在相互组合时活性增强的假设 [60]。事实上,不同的研究证明了,例如,CHK1 和 WEE1 抑制剂(例如,adavosertib 加 CHK1 抑制剂 LY2603618)[65] 或 PARPi、WEE1和 CHK1 抑制剂的三联 DDR 组合的协同作用 [51]。


5.7. PI3K

PI3K/AKT/mTOR 通路的改变在 HNSCC 中很常见,在 HPV 阳性和 HPV 阴性 HNSCC 中,PI3K 激活突变的发生率分别为 56% 和 39%[70,71]。不同的数据支持该途径作为对 EGFR抑制剂和 RT 耐药的重要机制的作用 [72]。尽管有这些机制,

临床前模型表明,单独抑制 PI3K 会导致对 RAS/MEK/ERK 或 EGFR 通路的补偿性正反馈,从而诱导早期耐药。另一方面,联合疗法(例如,针对 PI3K 的多种亚型或联合其他 DDR 抑制剂或 DNA 损伤剂)可以实现协同效应 [73]。此外,与 HNSCC 的其他靶向治疗一样,有效的生物标志物仍然悬而未决。最近,NOTCH-1 功能丧失突变 (NOTCH1mut) 已显示出作为 PI3K/AKT/mTOR 抑制的预测因素的潜在作用。因此,在 HNSCC 细胞系和异种移植模型中,NOTCH1mut 与对多种 PI3K/mTOR抑制剂的敏感性密切相关,而野生型细胞中的 NOTCH1 抑制或敲除会增加这种影响。然而,为了克服所有这些限制,泛 PI3K 抑制剂(作用于 PI3K 的一种以上同种型)最近已成为潜在的新有效化合物 [74]。目前,buparlisib是临床证据最多的泛PI3K抑制剂。 Buparlisib (BKM120) 是一种口服可逆 PI3K 抑制剂,无论PIK3CA 状态如何,它都显示出对肿瘤细胞的抗增殖和促凋亡作用 [75]。然而,考虑到早期的安全性数据,它作为单一疗法的使用已被联合策略所取代 [76]。最近完成了一项调查 buparlisib 和西妥昔单抗组合的 2 期研究,正在等待结果 (NCT01816984)。此外,buparlisib 和紫杉醇相结合的 2 期研究结果显示临床疗效提高,安全性可控,表明治疗前转移性 HNSCC 的有效机会 [77],并且该组合的3 期 BURAN 试验仍在进行中(NCT04338399 )。


5.8. CDK

细胞周期蛋白依赖性激酶 (CDK) 在细胞周期控制中起主要作用。在过去几年中,不同的 CDK4/6 抑制剂已被批准用于治疗乳腺癌,并已在其他恶性肿瘤的后期试验中进行了测试 [78-80]。最近,CDK 抑制已成为化学和放射增敏和免疫刺激的潜在机制,导致将 ICI 和CDK 抑制剂纳入不同环境的临床前和临床研究 [81]。

在 HNSCC 中,除了 CDK4/6 抑制之外,同一家族的其他激酶已被确定为反应和不良结果的潜在生物标志物 [81,82]。

这些证据也导致了在临床环境中对 HNSCC 中 CDK 抑制的研究。在 R/M HNSCC 的 1 期研究中,palbociclib 加西妥昔单抗显示出较高的疾病控制率,并且在随后的铂耐药或西妥昔单抗耐药的HPV 阴性HNSCC 的2期试验中,该组合显示出与 PD- 1 抑制剂,表现优于单药西妥昔单抗 [83,84]。尽管有这些早期数据,但近期在 R/M 环境中 palbociclib加卡铂的多中心 2 期试验结果并未显示生存结果有所改善,并表明它与显着的骨髓抑制相关 [85]。 CDK 抑制剂在 HNSCC 中的其他临床试验正在进行中,正在等待结果(NCT03024489、NCT04000529)。

其他不太常见的分子改变。大多数 HNSCC 显示出与烟草暴露一致的基因组特征,或者以可检测的 HPV DNA 为特征。最近,关于 HNSCC 突变情况的不同数据已发表,显示 TP53、CDKN2A、PTEN、PIK3CA 和 HRAS 的频繁改变以及与鳞状分化相关的基因突变,如 NOTCH1、IRF6 和 TP63 [81]。

对 279 个HNSCC病例的癌症基因组图谱分析提供了全面的基因组测序。在 HPV 相关肿瘤中,PI3KCA、TRAF3 和E2F1 扩增被报告为最常见的改变,而吸烟相关的 HNSCC 主要以 TP53、CCND1 和 CDKN2A 突变为特征[86]。在同一分析中,除了代表大多数 HNSCC 的这两个亚组之外,还描述了其他类型的基因组谱,与不太普遍的 SC 相关,这些 SC 包含 NSD1、AJUBA 和 FAT1 基因(参与 WNT 信号传导)的失活改变.描述了口腔肿瘤的不同特征。事实上,FAT1、CASP8、CDKN2A、与其他 HNCs 恶性肿瘤和其他鳞状非 HNCs 癌症相比,在这些肿瘤中发现和 NOTCH1 突变的频率更高。另一个口腔肿瘤亚组的特点是预后更佳,其拷贝数改变不常见,并伴有 PIK3 和 HRAS 的激活突变,以及较少出现的 CASP8、NOTCH1 和 TP53 突变 [86,87]。


6. 结论

总之,尽管需要新的生物标志物驱动的方法和新的临床研究,但可以预期 HNSCC 的治疗方案可能会发生变化。现代癌症治疗方法应该包括肿瘤的分子分析,这可以导致更个性化的方法(在图 1 中,您可以看到可能被我们可用的各种药物“击中”的目标)。所采用的治疗策略,无论是化疗、靶向治疗还是免疫治疗,虽然有效,但仍因失败率太高而造成负担,这通常不容易解释。研究预测免疫治疗反应的生物标志物,以及研究HNSCC的突变状态,甚至研究一些化疗药物(顺铂、氟尿嘧啶)反应不良或良好的预测基因多态性,可以彻底颠覆治疗设想。事实上,早期识别对各种治疗的不良反应者和良好反应者应该是在不久的将来可以实现的目标。需要新的临床研究来更好地预测肿瘤分子改变的临床相关性和靶向治疗/免疫治疗的益处。表1 显示了 HNSCC 中使用的主要药物。

  

HNSCC 中新的可能目标.png

图 1. HNSCC 中新的可能目标。 APC:抗原呈递细胞; NK:自然杀伤细胞; PARP:聚(ADP-核糖)聚合酶; IDO-1:吲哚胺 2,3-双加氧酶; ATR:共济失调毛细血管扩张症和 Rad3 相关蛋白。

表 1. HNSCC 中使用的药物。

  

表 1. HNSCC 中使用的药物。.png



补充材料:补充文件可在 https://www.mdpi.com/article/10.3390/biomedicines9081045/s1 在线获得。

资金:这项研究没有获得外部资金。

知情同意声明:不适用。

利益冲突:作者声明没有利益冲突。


参考(未更新完,可到原网查看)

1. NccN 指南。头颈癌。版本 3.2021。

2. Pentangelo,G.; Nisticò, S.;普罗文扎诺,E.;Cisale, G.; Bennardo, L. 外用 5% 咪喹莫特序贯手术治疗 HPV 相关的唇部鳞状细胞癌。 Medicina2021, 57, 563. [CrossRef] [PubMed]

3. 本纳多,L.;本纳多,F。朱迪斯,A.;帕桑特,M。达斯托利,S.;莫龙,P。普罗文扎诺,E.;帕特鲁诺,C.; Nisticò, S. 局部化疗作为不可切除鳞状细胞癌的辅助治疗:到目前为止我们知道什么?咖喱肿瘤。 2021、28、2317-2325。 

4. 爱奥娜,F。博西,P。 Guida, A.;阿尔贝蒂,A.;武藤,P。萨尔扎诺,G.;奥塔亚诺,A.;马格利托,F。莱奥帕多,D.; De Felice, M.;等。头颈部复发性/转移性鳞状细胞癌:一个巨大而有趣的挑战,可以通过结合局部和全身治疗的综合治疗来解决。癌症 2021, 13, 2371. [CrossRef] [PubMed]

5. 法萨诺,M。德拉科尔特,C.M.;维斯卡迪, G .;迪列洛,R。帕拉廖拉,F。斯帕拉诺,F。亚科维诺,M.L.;卡斯特里奇诺,A .;多利亚,F。西卡,A .;等。头颈癌:抗EGFR药物在免疫治疗时代的作用。那个。高级医学肿瘤学。 2021, 13. [CrossRef][PubMed]

6. 法萨诺,M。德拉科尔特,C.M.;迪列洛,R。巴拉,G。斯帕拉诺,F。维斯卡迪, G .;亚科维诺,M.L.;帕拉廖拉,F。家庭,V。恰拉梅拉,V。等。在非小细胞肺癌中诱导自然杀伤抗体依赖性细胞毒性和西妥昔单抗加 avelumab 的临床活性。 ESMO 公开赛 2020, 5, e000753。 [交叉引用]

7. Pockley,A.G.;沃佩尔,P.; Multhoff, G. 基于 NK 细胞的肺癌疗法。专家意见。生物。那个。 2019、20、23-33。

8. Vermorken,J.B.;梅西亚,R.;里维拉,F。 Remenar,E。 Kawecki, A.;罗蒂,S。埃尔凡,J.;扎博洛特尼,D.; Kienzer, H.-R.;Cupissol, D.;等。铂类化疗加西妥昔单抗治疗头颈癌。 N. 英语。 J. 医学2008, 359, 1116–1127。 [CrossRef] [PubMed]

9. Vermorken,J.B.; Stöhlmacher-Williams, J.;达维登科,I。 Licitra, L.;温奎斯特,E。维拉纽瓦,C.;福阿,P。罗蒂,S。 Skladowski, K.;田原,M。等。顺铂和氟尿嘧啶联合或不联合帕尼单抗治疗复发性或转移性头颈部鳞状细胞癌 (SPECTRUM):一项开放标签 3 期随机试验。柳叶刀肿瘤。 2013, 14, 697–710。 [交叉引用]

10. 马基尔斯,J.-P.;斯佩尼尔,P。克劳斯,J.;迪茨,A.;卡明斯基,M.-C.;拉拉米,Y。亨克,M。凯尔霍尔茨,美国; Knecht, R.;新泽西州斯卡特维德;等。抗 EGFR 抗体混合物 Sym004 在头颈部鳞状细胞癌患者中的概念试验证明。癌症化学。药学。 2015, 76, 13-20。 [交叉引用]

11. 克利,J.M.;卡尔沃,E。莫雷诺,诉;尤里克,D.;夏皮罗,G.I.;范德瓦尔,加利福尼亚州;中心。;吉福德,M。巴克,D.;罗伯茨-拉普,L.;等。一项评估 losatuxizumabvedotin (ABBV-221) 的安全性和药代动力学的 1 期研究,这是一种携带单甲基 auristatin E 的抗 EGFR 抗体-药物偶联物,用于可能过度表达 EGFR 的实体瘤患者。调查。新药 2020, 38, 1483–1494。 [CrossRef] [PubMed]

12. 威廉,W.N.,小;曹,A.S.;冯,L.;金斯伯格,L.E.;李,J.J.;凯斯,硕士;格里森,理学士;金,E.S.顺铂、多西他赛和厄洛替尼在复发性和/或转移性头颈部鳞状细胞癌患者中的单臂 II 期研究。肿瘤学家 2018, 23, 526-e49。 [交叉引用]

13. Tan, E.-H.;高,C。林,W.T.;苏,K.C.; Khoo, M.L.;谭,T。谭,D.S.W.; Ang, M.K.;吴,Q.S.;谭, P.H.;等。吉非替尼、顺铂和同步放疗治疗局部晚期头颈癌:EGFR FISH、蛋白表达和突变状态不是预测性生物标志物。安。肿瘤。 2012、23、1010-1016。 [交叉引用]

14. 巴蒂亚,A.K.;梅赫拉,R.;汗,SA;埃格尔斯顿,BL;阿尔波,R.K.;兰戈,M。里奇,J.A.; Burtness, B.卡铂/紫杉醇和西妥昔单抗的II 期试验,随后是卡铂/紫杉醇/西妥昔单抗和厄洛替尼,用于头颈部转移性或复发性鳞状细胞癌。J.临床。肿瘤。 2016, 34, 6027. [CrossRef]

15. 贝尔贡齐尼,C.;莱昂内蒂,A.;蒂塞奥,M。乔瓦内蒂,E.;彼得斯,G.J.表皮生长因子受体酪氨酸激酶的第二代不可逆抑制剂达克替尼在晚期非小细胞肺癌中是否有作用?专家意见。药剂师。 2020, 21, 1287–1298。 [CrossRef] [PubMed]

16. 郭,Y。安,M.-J.;陈,A.; Wang, C.-H.;康,J.-H.; Kim, S.-B.;贝洛,M。阿罗拉,R.;张,Q。他,X。等。阿法替尼与甲氨蝶呤作为二线治疗治疗亚洲复发性或转移性头颈部鳞状细胞癌患者在铂类治疗期间或之后进展 (LUX-Head &Neck 3):一项开放标签、随机 III 期试验。安。肿瘤。 2019, 30, 1831–1839。[交叉引用]

17. 梅,Z。黄,J。乔,B.;林,A.K.-Y。头颈部鳞状细胞癌免疫治疗中的免疫检查点通路。国际。 J. 口腔科学。 2020 年 12 月 1-9 日。 [CrossRef] [PubMed]

18. 洛贝法罗,R.;维斯卡迪,G.;迪列洛,R.;马萨,G.;亚科维诺,ML;斯帕拉诺,F。费拉拉,R.;西诺雷利,D.;原型,C.;普雷拉,A.;等。免疫治疗对体力状态较差的非小细胞肺癌患者的疗效和安全性。 J.临床。肿瘤。 2020, 38, e21601。 [交叉引用]

19. 赵,Y.;杨,W。黄,Y。崔,R。李,X。 Li, B. 在癌症免疫治疗中靶向 CTLA-4 的角色演变。细胞。生理。生化。 2018, 47, 721–734。 [交叉引用]

20. 石,L.;孟,T。赵,Z.;韩,J。张,W.;高,F。 Cai, J. CRISPR 敲除 CTLA-4 增强细胞毒性 T 淋巴细胞的抗肿瘤活性。基因 2017, 636, 36-41。 [交叉引用]

21. 施瓦布,K.S.;克里斯蒂安森,G.;希尔德,H.H.;举行,S.E.;海涅,A.; Brossart, P. 用 Nivolumab 和 Ipilimumab 成功治疗头颈部难治性鳞状细胞癌。案例代表 Oncol。 2018、11、17-20。 [交叉引用]

22. 德拉科尔特,C.M.;巴拉,G。恰拉梅拉,V。迪列洛,R。比西多米尼,G。萨帕维尼亚,S。卢斯,A .;阿巴特,M.;菲奥雷利,A.;卡拉利亚,M。等。来自三维球体培养物的NSCLC患者中 PD-L1 和MEK 双重阻断的抗肿瘤活性。J.经验。临床。癌症研究。 2019, 38, 1-12。[交叉引用]

23. 亨特,K.A.;索辛斯基,硕士;比利亚鲁兹,L.C.PD-L1 检测指导肺癌患者选择 PD-1/PD-L1抑制剂治疗。摩尔。诊断。那个。 2018 年22月 1-10 日。[交叉引用]

24. 利奥迪。;西米诺,F。;西蒙,。;来吧,E.F。;法尔科五世。;Martin Martorell,P.液体活检在胸部肿瘤免疫治疗中的作用。探索!目标。抗肿瘤治疗。2020, 1, 183-199.[交叉参考]

25. 伯特尼斯,B.;哈灵顿,K。格雷尔,R。苏利埃,D.;田原,M。 de Castro, G.,Jr.;普西里,A.;巴斯泰,N.;纽帕内,P.;布拉特兰,Å。等。帕博利珠单抗单独或联合化疗与西妥昔单抗联合化疗治疗复发性或转移性头颈部鳞状细胞癌 (KEYNOTE-048):一项随机、开放标签、3 期研究。柳叶刀 2019,394, 1915–1928。[交叉引用]

26. 索利纳斯,C.;Aiello, M.;罗扎利,E.;兰贝蒂尼,M.;威拉德-加洛,K.;Migliori, E. 程序性细胞死亡配体 2:癌症免疫反应中被忽视但重要的目标?翻译肿瘤。 2020, 13,100811. [CrossRef] [PubMed]

27. 费尼齐亚,F.;帕斯夸莱,R.;罗马,C.;贝尔甘蒂诺,F。伊纳科内,A.; Normanno, N. 测量非小细胞肺癌的肿瘤突变负荷:组织与液体活检。翻译肺癌研究。 2018, 7, 668–677。 [交叉引用]

28. 梅赫拉,R.; Seiwert, T.Y.;古普塔,S。韦斯,J。格鲁克,我。埃德,J.P.;伯特尼斯,B.;田原,M。基姆,B.;康,H。等。派姆单抗治疗复发性/转移性头颈部鳞状细胞癌的疗效和安全性:KEYNOTE-012 长期随访后的汇总分析。兄弟J. 癌症2018, 119, 153-159。 [交叉引用]

29. 张,L.;李,B.;彭,Y.;吴,F。李,Q。林,Z。谢,S.;肖,L.;林,X。欧,Z。等。 TMB 的预后价值及 TMB 与头颈部鳞状细胞癌免疫浸润的关系:一项基于基因表达的研究。口腔肿瘤。 2020, 110, 104943。 [CrossRef]

30. Ciardiello,D.; Vitiello, P.P.;卡多内,C.;马提尼,G。特罗亚尼,T。马蒂内利,E。Ciardiello, F. 结直肠癌的免疫疗法:治疗效果的挑战。癌症治疗。牧师2019, 76, 22-32。 [交叉引用]

31. 西洛纳,M.;洛卡特洛,L.G.;诺维利,L.; Gallo, O.头颈癌发生中的错配修复系统(MMR) 及其在调节免疫治疗反应中的作用:批判性评论。癌症2020, 12, 3006. [CrossRef]

32. 德鲁特,E.J.;Ooft, M.L.;德弗里斯,洛杉矶;威廉姆斯,S.M.肿瘤浸润性 T淋巴细胞在头颈部鳞状细胞癌中的预后作用:系统评价和荟萃分析。肿瘤免疫学 2017, 6, e1356148。[交叉引用]

33. 黄,交流;波斯托,硕士;奥尔洛夫斯基,R.J.;米克,R。本施,B.;曼恩,S。徐文;哈蒙,S。吉尔斯,J.R.;温茨,B.;等。与抗 PD-1反应相关的 T细胞活力与肿瘤负荷比。自然2017, 545, 60-65。 [CrossRef] [PubMed]

34. 斯佩克特,ME;贝利尔,E。阿姆拉尼,L.;扎林斯,K.;史密斯,J。布伦纳,J.C.;罗泽克,L.;阮,A.;托马斯,D。麦克休,J.B.;等。头颈部鳞状细胞癌中肿瘤浸润淋巴细胞的预后价值。 JAMA 耳鼻喉科。颈部外科。 2019、145、1012-1019。 [CrossRef] [PubMed]

35. Chen,S.-W.; Li, S.-H.; Shi, D.-B.;江,W.-M.;宋,M。杨,A.-K.; Li, Y.-D.;贝,J.-X.; Chen, W.-K.;Zhang, Q. PD-1/PD-L1 在头颈部鳞状细胞癌中的表达及其临床意义。国际。 J.生物。标记 2019, 34, 398–405。 [CrossRef] [PubMed]

36. 鲍姆,J.M.;阿加瓦尔,C.; Cohen, R.B. 头颈癌免疫疗法:

37. 扬茨,S.;Smith, D. 抑制吲哚胺 2,3-双加氧酶 (IDO) 作为增强癌症免疫疗法的策略。生物药物2018,32, 311–317。 [CrossRef] [PubMed]

38. 米切尔,T.C.;哈米德,O。华盛顿特区史密斯;鲍尔,T.M.;瓦瑟,J.S.;奥尔赞斯基,A.;卢克,J.J.;巴尔马努基安,A.S.;施密特,E.V.;赵,Y.;等。 Epacadostat Plus Pembrolizumab 用于晚期实体瘤患者:多中心、开放标签 I/II 期试验的 I 期结果 (ECHO-202/KEYNOTE-037)。 J.临床。肿瘤。 2018, 36, 3223–3230。 [CrossRef] [PubMed]

39. 卡普隆,H。穆拉里达兰,M.;施耐德,Z.; Reichert, J.M.Antibodies to watch in 2020.mAbs2020, 12, 1703531.[CrossRef]

40. 博雷尔,C.;荣格,A.C.; Burgy, M. 免疫疗法在治疗复发性或转移性头颈部鳞状细胞癌方面的突破。癌症 2020, 12, 2691. [CrossRef]

41. 马特奥,J。查克拉瓦蒂,D.;迪恩斯特曼,R.; Jezdic, S.;冈萨雷斯-佩雷斯,A.;洛佩兹-比加斯,N.; Ng, C.K.Y.;贝达德,P。托托拉,G.; Douillard, J.-Y.;等。将基因组改变列为癌症精准医学目标的框架:ESMO 分子靶标临床可操作性量表 (ESCAT)。安。肿瘤。 2018, 29, 1895–1902。 [交叉引用]

42. 吉拉尔迪, M.;王志.;普罗耶托,M。奇拉, A .;Calleja-Valera, J.L.;后藤,Y。瓦诺尼,M。简斯,M.R.;米库尔斯基,Z。 Gualberto, A.;

等。 Tipifarnib 作为 HRAS 突变头颈部鳞状细胞癌的精准疗法。摩尔。癌症治疗。 2020, 19, 1784–1796。


点击查看:头颈部肿瘤的转化洞察力和新的治疗观点(前部分)


更多教程文章:

图片翻译、拍照翻译、截图翻译你都会使用吗?

医学翻译需要注意什么?怎么翻译医学?


免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。

来源于:MDPI


福昕翻译转换文章内容来源:https://fanyi.pdf365.cn/help/1222
上一篇: 西安文件翻译哪家好?文档翻译步骤有哪些?
下一篇: 肌痛性脑脊髓炎/慢性疲劳综合征:一种神经系统疾病?