福昕翻译

>

英文翻译

确定影响 COVID 易感性和严重性的人类遗传变异
一个人的基因会影响他们感染的风险和疾病症状的严重程度。一项大型国际研究确定了人类基因组中可能影响严重 COVID-19 风险的部分。萨米拉·阿斯加里 & 莱昂内尔 A. Pousaz一年多以来,科学家和临床医生一直在试图理解为什么有些人会患上严重的 COVID-19,而其他人几乎没有表现出任何症状。已知风险因素,例如年龄和潜在的医疗条件1,以及环境因素(包括健康的社会经济决定因素2 )在确定疾病严重程度方面发挥作用。然而,人类基因组中的变异是变异性研究较少的来源。在自然中写作, COVID-19 宿主遗传学倡议3 ( www.covid19hg.org) 的成员) 报告了一项针对 SARS-CoV-2 感染的大型人类遗传学研究的结果。研究人员确定了人类基因组中影响 COVID-19 易感性和严重性的 13 个位置(或位点)。科学家们已经知道人类遗传变异会影响传染病的严重程度,包括感染 SARS-CoV-2 4 - 6。遗传因素的影响范围很广,从可以区分个体出现轻微症状和危及生命的疾病7的罕见、高影响突变,到仅适度影响症状严重程度的更常见遗传变异5。即便如此,与其他
2021-07-14 18:44:28
286
怎么样把图片英文翻译成中文呢?
现在大多数人对翻译的依赖程度是越来越高了,我们的工作也是离不开翻译的,图片翻译、文档翻译都很普遍。而图片英文翻译成中文的价格相对低一点,福昕推出了一款专业提供PDF文档翻译、图片识别翻译、在线翻译、自动翻译以及人工翻译等服务的翻译平台,福昕翻译支持多语种,涵盖CAD图纸翻译 、学历认证翻译、简历翻译、论文翻译、合同翻译、留学翻译、移民翻译等不同专业翻译领域。下面我们看看图片英文翻译如何操作?图片英文翻译成中文方法:方法一:第一步、首先,双击打开平台,选择“图片翻译”功能。第二步、其次,再点击“添加文件”将需要翻译的图片上传到平台中。第三步、然后选择需要翻译的语种。第四步、平台右下角有一个导出格式,我们可根据自己的需要勾选。第五步、最后,点击右上角的“翻译导出”即可。第六步、紧接着,在跳转出来的页面中选择保存路径。第七步、翻译成功后,点击“前往导出文件位置”就可以。方法二:第一步:首先进入福昕官网,下载并安装好我们需要的平台【福昕翻译】。第二步:打开下载好的【福昕翻译】客户端,点击页面左侧导航栏中的“文档翻译”功能,将我们需要翻译的文档上传。第三步:文档上传
2021-10-18 20:55:37
86
什么文件翻译好用?在线pdf文件翻译中英文翻译
什么文件翻译好用?日常工作遇上各种文件,什么pdf、word、ppt、excel等等,遇上pdf文件翻译该咋办?在线pdf文件翻译中英文翻译技巧免费告诉你!操作1:打开福昕翻译官网,寻找到文档翻译功能,进入页面随后上传pdf文件翻译。操作2:文件上传后,选择翻译语言和翻译需求,我选择的是试用版免费翻译文件,默认中英文翻译,最后点击【开始翻译】。点击开始翻译后,快速就可以查看译文了,一篇23页pdf,完全免费翻译,下图是在线阅览的效果,原文译文左右对比,查看译文鼠标滑到哪译文就跟到哪非常适合阅读。什么文件翻译好用?操作简单、翻译快速、支持pdf、word、ppt、ecxel文件翻译,多语种选择,译后准确度高,这样的在线翻译您觉得够好用吗?趁着现在免费赶快去撸!更多教程:怎么翻译文档?试试这个专业翻译软件什么是全文翻译?一键翻译pdf文档、翻译word文档
2021-07-09 18:01:31
182
英文翻译,深圳文档翻译哪个靠谱?
  现在工作谁没有个英文文件翻译、合同翻译啊,最近在深圳的老同学找我,问我英文翻译,深圳文档翻译哪个靠谱?无论什么地区在线翻译平台都有解决办法,24小时自助翻译,有需求随时翻译,英文翻译可是最基础的语言翻译,27种语言任意翻译,一起了解下。在线翻译平台可以考虑福昕翻译,是福昕PDF旗下专业翻译平台,国产、安全、靠谱。翻译步骤:打开福昕翻译的文档翻译功能,然后上传需要翻译的文档,可以上传pdf、word、ppt、excel。上传后,确认翻译语言和翻译需求,有默认选项可以自己选择需求,没问题后点击【开始翻译】。翻译挺快,立马就可以查看译文,在翻译后的页面上两个按钮,分别是下载和查看,下图是我下载保留排版的译文,效果很可以啊打破了我对机器翻译的看法,翻译快,内容准确,还能保持原样,太酷。英文文档翻译教程就啰嗦到这了,这么方便的文档翻译应该让更多人知道,在深圳这个工作节奏快的城市需要这种高效的翻译办法,一起加入“轻”工作,告别费时费力时代。更多翻译教程:怎么在线翻译图片?专业人工翻译
2021-07-07 19:34:09
173
大脑区域神经可塑性调节的神经性疼痛潜在治疗方法
5. 基底神经节基底神经节由几个细胞核组成:纹状体(尾状核、壳核和伏隔核核心 (NAc))、苍白球外部 (GPe)、苍白球内部 (GPi)、丘脑底核 (STN)和黑质 (SN) [96]。中脑多巴胺能 (DA) 神经元与奖赏、认知和运动控制相关,由中脑边缘(腹侧被盖区,VTA)、中皮层(VTA-retrorubral)和黑质纹状体(SN parscompacta,SNc)通路介导,分别。因此,DA 细胞是基底神经节的组成部分 [97]。尽管以其在运动系统中的作用而闻名,但基底神经节是大脑适应性可塑性的主要部位,影响广泛的正常行为和神经和精神疾病。基底神经节整合传入的伤害性信息,以促进复杂和空间引导的疼痛避免/伤害性行为中协调的、分级的运动反应 [98]。以前的研究不仅表明基底神经节在伤害性感觉运动整合中的作用,而且还表明进出基底神经节的潜在伤害性通路 [99]。基底神经节分别接受来自脊髓和丘脑的直接和间接伤害性输入。皮质区域,例如 ACC 和S1,也向基底神经节发送与疼痛相关的信号,基底神经节有助于整合多种疼痛信息的皮质-基底神经节-丘脑回路,包括感觉、运动、情绪、认知和自主神经组件[96]。神经病理性疼痛期间基底节的神经可塑性及其调节物质 P (SP) 是一种众所周知的神经肽,参与脊髓中伤害性信息的传递 [100],但有趣的是,SP 在纹状体中显示出相反的作用。中村等人。发现将 SP 注入纹状体可抑制 PSL诱发的机械超敏反应,而联合输注NK1 受体拮抗剂CP96345 可阻断这种超敏反应。联合输注阿托品,而不是美加明,也阻断了 SP 输注到纹状体的镇痛作用,表明通过 NK1 受体激活纹状体毒蕈碱乙酰胆碱受体可能是神经性疼痛的潜在治疗方法 [101]。除了 DA 输入外,纹状体还高度表达内源性阿片类分子和受体。在 CCI 小鼠的 NAc 中,κ 和 δ 阿片受体以及强啡肽原和脑啡肽原的 mRNA 水平显着上调。这些观察结果表明 NAc 内的内源性阿片类药物信号可能是在神经性疼痛状况下得到加强[102]。甘丙肽在外周和脊髓水平的伤害性信息调节中起着重要作用[103]。有趣的是,NAc 中的甘丙肽也具有镇痛作用。在 PSL 大鼠的 NAc 中,甘丙肽受体 (GalR) 1 的表达上调。将 GalR1 激动剂 M617 或甘丙肽局部注射到 NAc中减弱了机械和热超敏反应,而这被 GalR1/2 拮抗剂 M35 阻断 [104]。VTA 可以通过 mPFC 输出的 DA 增强来调节疼痛相关行为。黄等人。表明 mPFC 中 VTA DA 末端的光遗传学刺激可诱导 CPP 并降低SNI 小鼠的机械超敏反应。 DA 输入增加了投射到 vlPAG 的 mPFC 神经元的活性 [105]。VTA-NAc 奖励途径在调节伤害性信息方面起着关键作用。张等人。发现 CCI 导致对侧 VTA-NAc DA 神经元的过度激活并增加对侧 NAc 中的BDNF 表达。这些 DA 神经元的光遗传学或药理学抑制逆转了神经损伤后 BDNF 的过度表达和热痛觉过敏。 VTA-NAc 通路中 BDNF 的条件性敲低或将茴香霉素显微注射到 VTA 以抑制 BDNF 合成改善了 CCI 小鼠的热痛觉过敏 [106]。Sirtuin 1 (SIRT1) 是一种 III 类组蛋白去乙酰化酶,据报道可减轻背根神经节和脊髓的神经性疼痛。李等人。发现 SIRT1 在 CCI 小鼠的对侧 VTA 中下调。通过将 SRT1720(一种 SIRT1 激活剂)显微注射到 VTA 中,可以抑制热痛觉过敏和神经损伤后 VTA 和 NAc 中 Fos 表达的升高 [107]。神经病理性疼痛期间基底神经节 DA 通路的可塑性变化与神经病理性疼痛的合并症有关。在大鼠 SNI 后两周,VTA DA 神经元的爆发性放电增强。此外,在 SNI 动物的 NAc 中,细胞外多巴胺水平增加,而 D2 受体的表达水平降低,但 D1 受体没有降低。另一项研究还报告说,在 SNL 大鼠神经病理性疼痛的早期而非晚期,NAc 内的多巴胺释放水平响应普瑞巴林的疼痛缓解或蔗糖摄入的奖励增加。基底节 DA 回路的这些改变和功能障碍异常可能导致神经性疼痛的合并症,例如抑郁和焦虑 [108,109]。 疼痛是帕金森病 (PD) 中普遍存在的非运动症状,已知 STN 与这种疼痛密切相关。在 SNc 注射 6-羟基多巴胺 (6-OHDA) 诱导的 PD 模型大鼠中,STN 细胞对足部疼痛性休克刺激的反应时间更长,幅度更大,表明 STN 中的异常神经可塑性可以介导疼痛症状。 PD [110]。另一项研究还报道了 6-OHDA 诱导的 PD 模型小鼠 STN 神经元的过度活跃和疼痛超敏反应,两者都被 STN 神经元的光遗传学抑制所阻断。有趣的是,STN-SNr 投射的光遗传学抑制减弱了机械和热超敏反应,而 STN-GPi 或 STN-腹侧苍白球 (VP) 投射的光遗传学抑制仅减弱了 PD 小鼠的机械超敏反应。这些发现表明,直接抑制 STN 神经元可能是缓解 PD 中各种疼痛症状的潜在治疗方法 [111]。6. 结论和观点疼痛传递途径的外周和中枢成分都显示出巨大的可塑性,增强或减少了疼痛信号。当可塑性促进保护性反射时,它可能是有益的,但当变化持续存在时,它可能会诱发慢性疼痛状况 [112]。啮齿动物模型中技术工具的最新发展,例如光遗传学、化学遗传学和脑成像,使我们能够了解大脑中神经递质的调节与慢性疼痛状况之间的关系 [113]。在这里,我们总结了神经病理性疼痛期间四个大脑区域的神经可塑性和逆转病理状态的调节(图 1,表 1)。在 S1 和 ACC 中观察到结构可塑性的最突出表现,例如树突棘转换和脊柱形态的变化。这两个区域的功能可塑性在每个亚型的兴奋性和抑制性神经元中各不相同,并且它共同将锥体神经元转变为多动症。相比之下,PAG 显示神经损伤后神经活动减少。谷氨酸能通路的可塑性变化,包括 mGluR5 信号传导的功能障碍,与这种活动减退有关。此外,在神经性疼痛期间,PAG 中的阿片类信号发生改变。这些改变可能与阿片类药物对神经性疼痛的镇痛作用降低有关。基底神经节不太关注疼痛研究。然而,越来越多的证据表明,它们也参与神经性疼痛的发生和维持以及神经性疼痛的合并症。    图 1. 神经病理性疼痛期间四个大脑区域的神经可塑性。向上 (↑) 和向下 (↓) 箭头分别表示“增加”和“减少”。  疼痛是一种多维的体验[114]。 S1 和 ACC 分别是处理疼痛的感觉和情绪方面的关键区域。认知方面也是疼痛体验的重要组成部分。 mPFC 在疼痛认知中起主要作用 [115],一些研究报告称,mPFC 在神经病理性疼痛期间表现出神经可塑性 [116,117]。这些神经特性的变化具有复杂性,根据 mPFC 的子区域或层的不同,会出现相反的效果 [84]。这种复杂性使得难以理解 mPFC 在神经性疼痛中的作用。尽管如此,与主要疼痛处理区域的联系[118]表明 mPFC在理解神经性疼痛机制方面的重要性。  表 1.神经病理性疼痛期间大脑的神经可塑性及其调节。  * PSL:部分坐骨神经结扎,SNI:备用神经损伤,CCI:慢性收缩损伤,CPN:腓总神经,SNL:脊髓神经结扎,CFA:完全弗氏佐剂,6-OHDA:6-羟基多巴胺,EA:电针, GB30:臀部区域的穴位,GB34:大腿外侧中线的穴位,ZIP:LTP 维持阻滞剂,PCC0208009:IDO1 抑制剂,雷帕霉素:mTOR 抑制剂,Ro25681:NR2B 抑制剂,金丝桃苷:从民间疗法,CP96345:NK1 受体拮抗剂,M617:GalR1 激动剂,SRT1720:选择性 SIRT1 激动剂。向上 ( )和向下( ) 箭头分别表示“增加”和“减少”。  PAG 通过其相互连接将疼痛调制信号发送到 rostroventromedial medulla (RVM) [119]。 RVM 还接收来自臂旁核和丘脑的信号,被认为是下行疼痛调节系统的最后一个中继器 [120]。此外,当RVM接收来自较高皮层的输入时位点,该区域还提供了一种稳态机制,可以减弱或增强伤害性输入 [121]。 RVM 通过投射到脊髓背角和三叉神经尾核的“细胞上”和“细胞外”双向调节疼痛 [122,123]。与疼痛处理区域的连通性意味着进一步研究神经病理性疼痛期间 RVM 中神经可塑性的重要性。  基底神经节通过调节多巴胺释放与 PD 密切相关 [124]。超过 50% 的 PD 患者患有疼痛,但这种疼痛的原因仍然难以捉摸 [125,126]。在这篇综述论文中,我们总结了基底节神经可塑性与神经病理性疼痛之间的关系,这可能有助于理解PD患者的疼痛。事实上,基底神经节的结构和功能神经变化被认为与 PD 患者的疼痛症状有关。  边缘系统中的其他大脑区域也与神经性疼痛有关。杏仁核对于疼痛的情绪方面至关重要 [127],并在神经性疼痛中表现出神经可塑性。神经损伤后臂旁核 - 中央杏仁核突触增强,这种突触可塑性独立于NMDA 受体[128]。有趣的是,一项研究报告称,在神经性疼痛期间,杏仁核中新神经元的生成得到了促进[129]。海马体在神经损伤后显示出树突棘形态和神经发生率的变化 [130,131]。这些改变与多种分子有关,例如肿瘤坏死因子-α [132] 和糖原合酶激酶-3 β [133]。海马体中这些蛋白质被破坏的神经可塑性也与神经性疼痛的合并症有关,包括焦虑和抑郁 [131,134,135]。  在这篇综述中,我们讨论了基于调节动物大脑神经可塑性的潜在治疗方法。最近,随着脑机接口领域的进步,出现了评估和刺激大脑的新技术[136,137]。脑刺激技术确实在临床慢性疼痛治疗中具有潜力:运动皮层的经颅磁刺激 [138] 和 ACC [139]、PAG [140] 和丘脑底核 [141] 的深部脑刺激。这一技术进步可能为临床前脑调制治疗慢性神经性疼痛的临床转移提供机会。  作者贡献:概念化,M.S.B.和 S.K.K.;分析,M.S.B.和惠普;写作-原稿准备,M.S.B.和惠普;写作审查和编辑,S.K.K.;可视化,M.S.B.和惠普;监督,S.K.K.;资金收购,S.K.K.所有作者都已阅读并同意手稿的出版版本。  资金:这项研究由韩国国家研究基金会 (NRF) 资助,资助号为 NRF-2017M3A9E4057926 给 S.K.K.  机构审查委员会声明:不适用。  知情同意声明:不适用。  数据可用性声明:不适用。  利益冲突:作者声明没有利益冲突。  参考(1-141,未完)  1. 拉贾, S.N.;卡尔,D.B.;科恩,M。芬纳鲁普,NB;弗洛尔,H。吉布森,S。基夫,F.J.;莫吉尔,J.S.;林坎普,M.;斯卢卡,K.A.;等。国际疼痛研究协会修订后的疼痛定义:概念、挑战和妥协。疼痛2020,161, 1976–1982。 [CrossRef] [PubMed]  2. 詹森,T.S.;男爵,R。汉帕,M.;卡尔索,E.;洛瑟,J.D.;赖斯,A.S.C.;特里德,R.-D。神经性疼痛的新定义。疼痛  2011、152、2204-2205。[CrossRef][PubMed]  3. 阿吉里奥,A.A.;布鲁纳,J.; Marmiroli, P.;Cavaletti, G.化疗引起的外周神经毒性 (CIPN):更新。暴击。牧师 Oncol。血肿。 2012,82, 51-77。 [CrossRef][PubMed]  4. 坎贝尔,J.N.;迈耶,R.A.神经性疼痛的机制。神经元 2006,52, 77-92。 [CrossRef] [PubMed]  5. 布朗,M.J.;阿斯伯里,A.K.糖尿病性神经病。记录。神经病。 1984, 15, 2-12。 [CrossRef][PubMed]  6. 伍尔夫,C.J.;曼尼恩,R.J.神经性疼痛:病因、症状、机制和管理。柳叶刀1999, 353,1959–1964。 [交叉引用]  7. 科洛卡,L.;路德曼,T。布哈西拉,D.;男爵,R。迪肯森,A.H.;亚尼茨基,D.;弗里曼,R。特鲁尼,A.;阿塔尔,N。芬纳鲁普,NB;等。神经性疼痛。纳特。牧师迪斯。总理。2017, 3,17002. [CrossRef]  8. 黄,J。加多蒂,V.M.;陈,L.; Souza, I.A.;黄,S。王,D。罗摩克里希南,C.;Deisseroth, K.;张,Z.;赞波尼,G.W.用于激活神经性疼痛的下行调制的神经元回路。纳特。神经科学。 2019, 22,1659–1668。[交叉引用]  9. 邦尼特,美国;Scherbaum, N.加巴喷丁和普瑞巴林有多容易上瘾?系统评价。欧元。神经精神药理学。 2017年,  27,1185–1215。[交叉引用]  10. 威芬,P.J.;德里,S。贝尔,RF;赖斯,A.S.;托勒,T.R.;菲利普斯,T。摩尔,R.A.加巴喷丁用于成人慢性神经性疼痛。  Cochrane数据库系统。修订版 2017,6,Cd007938。 [交叉引用]  11. 马丁内斯-纳瓦罗,M.;马尔多纳多,R.;巴尼奥斯,J.-E。为什么μ-阿片受体激动剂对神经性疼痛镇痛效果较差?欧元。  J.疼痛2019,23, 435–454。 [CrossRef] [PubMed]  12. 贾吉,A.S.; Singh, N.不同脑区在周围神经损伤引起的神经性疼痛中的作用。大脑研究。 2011、1381、187-201。 [CrossRef] [PubMed]  13. 库纳,R.;Flor, H.慢性疼痛中的结构可塑性和重组。纳特。牧师Neurosci。 2017、18、20-30。[交叉引用]  14. 金,W。金,S.K.;Nabekura, J.与慢性疼痛相关的初级躯体感觉皮层的功能和结构可塑性。 J. 神经化学。2017, 141,499–506。 [交叉引用]  15. Zhuo,M. 长期的皮质突触变化会导致慢性疼痛和情绪障碍。神经科学。莱特。2019, 702,66-70。  [交叉引用]  16. Sarnthein,J.;斯特恩,J。奥芬伯格,C.; Rousson, V.; Jeanmonod, D.在神经源性疼痛患者中增加 EEG 功率并减慢显性频率。大脑 A J. 神经。 2005,129, 55-64。 [交叉引用]  17. Min,Z.疼痛的突触模型:前扣带回皮层的长期增强。摩尔。细胞 2007, 23, 259–271。  18. 奥西波夫,MH;森村,K。Porreca,F.下行疼痛调制和疼痛时间化。咖喱。意见。支持帕利亚特。关心  2014,8, 143–151。[交叉引用]  19. 托尔塔,R。耶拉奇,V.; Zizzi, F. 神经病理性疼痛情绪方面的回顾:从共病到共发病。疼痛。 2017, 6, 11-17。 [交叉引用]  20. 金,Y.R.;金,C.-E.;尹,H。金,S.K.;金,S.J. S1采用单细胞的特征相关差异选择性和种群分布模式来编码机械感觉。正面。细胞。神经科学。 2019, 13. [CrossRef] [PubMed]  21. 凯西,吉隆坡; Minoshima, S.;莫罗,T.J.;科佩,R.A.皮肤温热、热痛和深冷痛期间人类大脑激活模式的比较。 J. 神经生理学。1996, 76,571–581。 [CrossRef] [PubMed]  22. 普洛纳,M。施密茨,F。弗洛因德,H.J.; Schnitzler, A. 人类初级躯体感觉皮层中触觉和疼痛的差异组织。 J. 神经生理学。2000,83,1770–1776。[CrossRef] [PubMed]  23. Coghill,R.C.;桑,C.N.; Maisog,J.M.; Iadarola, M.J. 人脑内的疼痛强度处理:双边分布式机制。 J. 神经生理学。 1999,82, 1934–1943。 [CrossRef] [PubMed]  24. Kenshalo,D.R., Jr.;安东,F。 Dubner,R.猴子和人类有害热刺激的检测和感知强度。 J.神经生理学。 1989, 62, 429–436。[CrossRef] [PubMed]  25. 乌赫尔斯基,ML;戴维斯,硕士;福克斯,P.N.无痛觉时的疼痛影响:大鼠躯体感觉皮层损伤后感觉麻木的证据。疼痛2012,153, 885–892。 [交叉引用]  26. 金,Y。孟Q;梅,L.;周,W。朱 X.;毛,Y。谢伟;张,X.;罗,M.-H.;陶,W.;等。尾侧背外侧纹状体的躯体感觉皮层输入控制持续性疼痛中的共病焦虑。疼痛2020, 161, 416–428。[交叉引用]  27. 辛格,A。帕特尔,D。李,A.;胡,L.;张,Q。刘,Y。郭,X。罗宾逊,E。马丁内斯,E。多安,L.;等。映射感觉和情感疼痛通路的皮层整合。咖喱。生物。2020, 30,1703–1715。 [交叉引用]  28. Bornhövd, K.; Quante, M.;格劳什,V.;布罗姆,B.;韦勒,C.; Büchel, C. 痛苦的刺激会在杏仁核、前额叶、脑岛和躯体感觉皮层中唤起不同的刺激-反应功能:一项单试验 fMRI 研究。大脑 A J. 神经。 2002, 125,1326–1336。 [交叉引用]  29. 陈,L.M.;弗里德曼,R.M.;罗,A.W.松鼠猴 SI 皮层内机械伤害性刺激的区域特异性表示。疼痛 2009, 141, 258–268。 [CrossRef] [PubMed]  30. Kenshalo, D.R., Jr.;查德勒,E.H.;安东,F。 Dubner, R. SI 伤害感受神经元参与了猴子感知有害热刺激强度的编码过程。大脑研究。 1988, 454, 378–382。 [交叉引用]  31. Krout,K.E.; Loewy, A.D. 臂旁核投射到大鼠中线和椎板内丘脑核。 J. Comp.神经病。  2000、428、475-494。[交叉引用]  32. 邓杰;周,H。林,J.-K.;沉 Z.-X.; Chen, W.-Z.; Wang, L.-H.;李,Q。穆,D。 Wei, Y.-C.;徐 X.-H.;等。臂旁核直接将脊髓伤害性信号传导至椎板内丘脑核,而不是杏仁核。神经元 2020, 107, 909-923。[CrossRef] [PubMed]  33. 古斯汀,SM;佩克,C.C.;切尼,L.B.;梅西,下午;默里,通用汽车;洛杉矶亨德森疼痛和可塑性:慢性疼痛是否总是与躯体感觉皮层活动和重组有关? J. 神经科学。 2012,32, 14874–14884。 [CrossRef] [PubMed]  34. 佩伦,R。施耐德,F.;法耶诺,我。康弗斯,P。巴拉尔,F.-G.;加西亚-拉雷亚,L.; Laurent,B. 神经性疼痛患者机械性异常性疼痛皮质表现的 fMRI 研究。神经病学 2004,63, 1838–1846。 [CrossRef][PubMed]  35. 金,S.K.;林,H。石川,T。柴田,K.; Shigetomi, E.;筱崎,Y。稻田,H。 Roh,S.E.;金,S.J.;李,G。等。皮质星形胶质细胞重新连接体感皮质回路以治疗周围神经性疼痛。J.临床。调查。 2016,126, 1983–1997。[交叉引用]  36. 石川,T。埃托,K。金,S.K.;唤醒,H。武田,我。堀内,H。穆尔豪斯,A.J.;石桥,H。 Nabekura,J. 皮质星形胶质细胞引发脊柱可塑性和镜像疼痛的诱导。疼痛 2018, 159, 1592–1606。 [交叉引用]  37. 金,S.K.;加藤,G。石川,T。 Nabekura, J. 神经病理性疼痛期间活小鼠体感皮层突触结构的阶段特异性可塑性。摩尔。疼痛 2011, 7, 87。 [CrossRef]  38. 熊伟;平,X。 Ripsch, M.S.;查韦斯,G.S.C.;汉农,H.E.;江,K.;鲍,C.;贾达夫,V.;陈,L.;柴,Z.;等。增强躯体感觉皮层的兴奋活动通过调节稳态可塑性减轻神经性疼痛。科学。 Rep. 2017, 7, 12743. [CrossRef]  39. Cichon,J.;布兰克,T.J.J.;甘,W.-B.; Yang, G.皮质生长抑素中间神经元的激活可防止神经性疼痛的发展。纳特。神经科学。 2017, 20,1122–1132。[交叉引用]  40. Wei,J.-a.;胡某;张,B.;刘,L.;陈,K。所以,K.-F.;李,M。 Zhang,L.电针激活躯体感觉皮层中的抑制性神经回路以缓解神经性疼痛。iScience2021, 24,102066。 [CrossRef]  41. 李,X。赵,Z.;马,J。崔世勋;易,M。郭,H。 Wan,Y.提取大鼠疼痛相关区域激光诱导伤害感受的神经振荡特征。正面。神经电路 2017,11, 71. [CrossRef] [PubMed]  42. 普洛纳,M。索尔格,C.; Gross, J.疼痛的脑节律。趋势认知。科学。2017、21、100-110。 [交叉引用]  43. 勒布朗,B.W.;鲍里,下午;赵,Y.C.; Lii, T.R.;萨博,C.Y.大鼠疼痛和镇痛的脑电图特征。  疼痛 2016,157,2330–2340。[CrossRef] [PubMed]  44. 勒布朗,B.W.; Lii, T.R.;西尔弗曼,AE;阿莱恩,R.T.;萨博,C.Y.在急性和慢性疼痛的大鼠模型中,皮质 θ 增加,而丘脑皮质连贯性降低。疼痛 2014, 155, 773–782。 [CrossRef] [PubMed]  45. 谭,L.L.;奥斯瓦尔德,M.J.;海因尔,C。 Retana Romero, O.A.;考沙利亚,S.K.;蒙耶,H。 Kuner, R.体感皮层中的伽马振荡在厌恶和伤害感受中招募前额叶和下行血清素通路。纳特。社区。 2019, 10, 983. [CrossRef]  46. 金,S.K.; Nabekura, J. 周围神经损伤后成人躯体感觉皮层的快速突触重塑及其与神经性疼痛的关联。 J. 神经科学。 2011, 31, 5477–5482。 [交叉引用]  47. 齐科普洛斯,B.; Barbas, H.情绪和注意力的途径集中在灵长类动物的丘脑网状核上。 J. 神经科学。  2012,32, 5338–5350。 [交叉引用]  48. 费雷拉-戈麦斯,J.;内托,佛罗里达州; Castro-Lopes, J.M. GABA(B2) 受体亚基 mRNA 在单关节炎动物的丘脑中减少。大脑研究。公牛。 2006, 71, 252–258。 [CrossRef] [PubMed]  49. 勒布朗,B.W.;克罗斯,B.;史密斯,K.A.;罗奇,C.;夏,J。 Chao, Y.-C.;莱维特,J。小山,S。摩尔,C.I.;萨博,C.Y.丘脑爆发下调皮质 Theta 和伤害性行为。科学。 Rep. 2017, 7, 2482. [CrossRef]点击查看:文章上部分内容怎么翻译文档?试试这个专业翻译软件图片翻译、截图翻译、拍照翻译、免费图片翻译简单搞定!免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-07-05 16:14:58
210
咖啡及其成分对胃肠道和脑肠轴的影响(结论)
3.5.美拉德反应产物:黑色素和丙烯酰胺我们小组进行的另一项胃肠运动的影像学研究评估了先前提到的咖啡银皮水提物中黑色素的作用[178]。咖啡银皮是咖啡豆外层的皮料,约占咖啡樱桃的4.2%(w / w),是咖啡烘焙过程中产生的唯一副产品[179]。咖啡银皮已被提议作为益生元,抗氧化剂和膳食纤维的可持续天然来源[180]。咖啡银皮提取物的抗氧化特性是由于CGA的存在[181],也归因于黑色素在烘烤过程中产生的[182]。黑色素是在美拉德反应的最后阶段产生的高分子量棕色聚合化合物[183],而衍生自咖啡的那些被称为“美拉德化膳食纤维” [184]。因此,在健康的雄性Wistar大鼠中,以1 g/ kg的饮用水剂量在体内研究了纤维效应。 4周后,大鼠通过管饲法接受硫酸钡,然后在0-8小时后拍摄X光片。另外,进行结肠珠排出试验以具体确定对结肠推进的可能影响。与先前关于SCG的研究一致,黑色素加速了小肠的转运(因为暴露于黑色素的大鼠中盲肠的到达速度明显快于对照动物),并且倾向于加速粪便颗粒的形成,尽管这种作用并不明显。有趣的是,来自黑色素组的粪便颗粒倾向于稍大,这可能是由于该组中较高的纤维摄入量所致,从而使粪便颗粒在机械刺激结肠方面稍微更有效。此外,黑色素没有显着改变插入结直肠3 cm的珠子的排出潜伏期,表明在此水平上参与结肠推进的运动因子(内在和外在神经支配,平滑肌和ICC)没有改变。饮食接触咖啡银皮产生的类黑素,它们可能被用作功能性食品成分[178]。有趣的是,Argirova等。 (2010)[185]表明,黑素能作用于肌张力,并可能促进Ca2 +流入分离的胃肌层细胞。因此,这些化合物不仅可以通过纤维作用,而且可以通过胃肠道平滑肌细胞的直接活化来发挥其促动力作用,这需要使用分离的肠道肌肉组织来证实。如上所述,丙烯酰胺是由于之间的美拉德反应而形成的。加热过程中的氨基酸和糖[186],也发生在咖啡烘焙过程中。尽管很难评估人体中丙烯酰胺的饮食摄入量,但一般人群的估计饮食摄入量为每天0.3-0.8 µg /kg体重[187]。这是由于不仅暴露于咖啡,而且还暴露于可能也含有丙烯酰胺的其他食品(薄片,谷物)和工业产品(与聚合物,胶水和纸张有关的那些,水处理和化妆品工业[126])。相关浓度会影响人类健康。尽管消化道是丙烯酰胺吸收的主要途径之一,而且包括咖啡在内的含丙烯酰胺食物的摄入量仍在增长,但几乎没有评估其对ENS神经元的作用,但这很重要因为丙烯酰胺是周围神经系统的毒素。在肠道肌层神经元,平滑肌细胞和神经胶质细胞的共培养模型中研究了丙烯酰胺的影响[188]。在这项研究中,将丙烯酰胺以0.01 mM至12 mM的剂量添加到共培养物中,然后孵育24、96或144 h。与肉毒杆菌毒素A(也在同一系统中进行测试并且仅改变神经元功能)相反,当以0.5–2mM的剂量使用时,丙烯酰胺会破坏肠道神经元结构。在这些剂量下,损伤对轴突结构是选择性的,而不影响存活,而在较高剂量下,神经元的存活显着降低。轴突丢失伴有乙酰胆碱释放减少,这在4 mM时可忽略不计。该机制涉及突触囊泡的合成和功能,但不涉及胆碱的摄取。高剂量的神经元损失主要涉及坏死机制,尽管也证实了非胱天蛋白酶3介导的凋亡死亡的频率较低。有趣的是,还显示出在低剂量丙烯酰胺攻击后,轴突再生是可能的。实际上,在低剂量攻击后的24-96小时内,轴突的生长比对照培养的细胞更快,这表明在最初的破坏性侵害之后,补偿机制的参与。但是,发现神经递质的释放至少要延迟几天才能到达轴突再生长。有趣的是,所描述的所有变化都对神经元具有选择性(与潜在的表型无关),肠神经胶质细胞显然未受到影响[188]。口服给实验动物后,丙烯酰胺也被证明对ENS产生神经毒性作用。早期研究显示ENS的变化,丙烯酰胺治疗的大鼠类似于链脲佐菌素诱导的糖尿病动物,但儿茶酚胺能含量发生改变,降钙素基因相关肽(CGRP)的量减少,血管活性肠肽(VIP)水平相应增加[189]。但是,这些研究并未评估这些变化是否与神经元丢失,轴突变性或功能改变有关。最近,已经在猪模型中研究了丙烯酰胺给药的作用。结果表明,即使低剂量的丙烯酰胺也会影响胃肠道的结构和功能,并引起ENS神经元的显着反应。例如,可卡因和苯丙胺调节的转录本(CART)的表达在应激刺激和神经保护的神经元反应中起着至关重要的作用,特别是在接受低剂量的未成熟母猪的小肠肌层丛中或通过口服途径高剂量的丙烯酰胺治疗28天,这被解释为是对这种病理刺激作出响应的胃肠道神经元保护/恢复过程的一部分[190]。甘丙肽是另一种具有神经保护作用的肽,可调节神经损伤后的存活或再生并发挥抗炎活性[191,192]。因此,在相同的猪模型中,即使在低剂量下,胃中粘膜下层和肌间神经丛的甘丙肽样免疫反应神经元的数量也会增加。此外,对甘丙肽具有免疫反应性的同时对VIP,nNOS或CART具有免疫反应性的细胞的粘膜下层和肌层神经元细胞也有所增加。作者再次将这些发现解释为甘丙肽的神经营养/神经保护作用(可能与VIP,nNOS和CART协同作用)在丙烯酰胺中毒后胃ENS的恢复过程中[193]。该系列的另一篇论文于2019年发表,在猪十二指肠中发现了相似的结果。与以前一样,通过口服途径以低剂量(0.5 µg / kg)的每日剂量使用丙烯酰胺,或以10倍剂量(5 µg / kg)的口服途径使用丙烯酰胺4周。两种治疗均导致对P物质(SP),CGRP,甘丙肽,nNOS和囊泡乙酰胆碱转运蛋白(VACHT)免疫反应的神经元百分比显着增加,尽管高剂量会引起更强烈的变化。在这种情况下,作者给出的解释是,所有这些变化可能都是补偿性的塑性作用,试图保护神经元免受损害并恢复肠道神经元稳态[194]。值得注意的是,尽管丙烯酰胺会在体内和体外激活小胶质细胞,从而导致促炎性细胞因子的释放,并因此导致神经元损伤[195],但肠神经胶质细胞参与由丙烯酰胺诱导的肠道神经元改变尚无明确报道。除上述研究使用肠肌神经元神经元,平滑肌细胞和神经胶质细胞共培养,并且在最后一种细胞类型中未显示任何丙烯酰胺诱导的改变外,尚未进行评估[188]。4.咖啡和脑肠轴如前所述,咖啡是化合物的天然来源(图4),能够在脑肠轴上发挥关键作用[196]。有趣的是,在Pubmed中将“脑肠轴”和“咖啡”组合为关键字时,仅检索了三篇论文(截至2020年11月29日),其中两篇以咖啡与PD的关系为主导(请参见下文)[ 197,198]。另一个是Papakonstantinou等人最近的一项研究。[199],他对40位健康的年轻人(20-55岁)进行了一项随机,双盲,交叉的临床试验(ClinicalTrials.govID:NCT02253628),以研究200毫升含160毫升咖啡饮料的效果mg咖啡因(冷热速溶咖啡,冷浓缩咖啡,热过滤咖啡)对(1)自我报告的胃肠道症状,(2)唾液胃泌素,(3)压力指数(唾液皮质醇)和α-淀粉酶)和心理测量,以及(4)血压。重要的是,参与者是每天的咖啡消费者,并且该研究是在无压力的情况下进行的条件。咖啡对自我报告的焦虑水平没有影响。此外,参与者在与胃肠道阴性症状(例如,腹部不适,腹胀,消化不良和胃灼热),慢性压力和负面情绪有关的所有问题中均得分很低(十分之1),而得分较高(10分钟有9分)关于积极情绪的所有问题。饮用咖啡后,唾液中的α-淀粉酶活性显着提高,仅在摄入后15分钟和30分钟时冷速溶咖啡和过滤后的咖啡之间存在显着差异。不论咖啡类型如何,唾液胃泌素暂时增加,而唾液皮质醇或自我报告的焦虑水平不受影响。但是,在实验期结束时,血压显着升高(但在健康的生理水平内),与咖啡的类型/温度无关。尽管许多研究已经解决了咖啡和咖啡因对心血管和中枢的影响,但Papakonstantinou等人的报告指出。似乎是唯一一项在相同的个体和相同的条件下专门评估它们对整个脑-肠轴影响的研究。因此,证明了在非压力条件下的急性咖啡摄入与胃肠道症状无关,但激活了交感神经系统,与唾液中的α-淀粉酶和血压升高有关,但与唾液皮质醇无关,这被认为是由于可能是咖啡的抗应激作用[199],可能是咖啡因以外的其他咖啡化合物造成的。因此,重要的是,不仅要研究咖啡,还要研究其成分对脑肠轴的影响。图4.咖啡化合物对脑肠轴的影响。缩写:CGA,绿原酸; GABA,γ-氨基丁酸。 4.1.咖啡因咖啡因是咖啡中发现的主要精神活性化合物(表1)。它是从饮食中摄取并吸收到血液中,刺激交感神经系统活动,并容易穿过血脑屏障(BBB),对中枢神经系统(CNS)也具有刺激作用[196,200]。咖啡因通过调节不同的神经元途径对中枢神经系统有影响。因此,在动物和人体研究中,都发现咖啡因暴露后多巴胺能系统发生了变化[201]。不同的研究表明,咖啡因会增加细胞外多巴胺的浓度[202],以及多巴胺能受体和转运蛋白的表达[203],从而导致认知功能障碍和注意力的改善[204]。此外,据报道,咖啡因能够抵抗多巴胺能神经元的丧失,在动物模型中诱导神经保护并减轻神经系统疾病[205],这在PD的背景下可能特别有用。(见下文)。然而,精神分裂症和成瘾中的多巴胺能活性增加。因此,在这些患者中也必须考虑咖啡和咖啡因的作用。重要的是,由于不同的原因,精神分裂症患者的咖啡和咖啡因摄入量相对较高,包括缓解无聊和冷漠的意愿或抗精神病药物的副作用,如镇静或口干[206]。通常,建议这些患者减少咖啡消耗量[207]。另一方面,据报道咖啡因和谷氨酸能信号传导之间可能存在相互作用。长期摄入咖啡因可减轻成年雄性C57BL / 6小鼠的胚细胞诱导的记忆障碍,这与在损伤的不同阶段对谷氨酸兴奋性毒性,炎症,星形胶质增生和神经元丢失的神经保护作用相关[208]。此外,摄入咖啡因还可以减少海马中谷氨酸能神经末梢的丧失,从而恢复糖尿病引起的小鼠记忆功能障碍[209]。此外,发现咖啡因会降低γ-氨基丁酸(GABA)能量系统的活性并调节GABA受体,从而导致神经行为效果[201]。长期摄入咖啡因可能与GABA的长期减少有关[210]。最后,Jee等人的最新评论。 (2020)指出,咖啡因的摄入对男性和女性都有不同的神经和精神病学影响[211],突出了评估性别对咖啡及其成分对脑肠轴影响的影响的重要性。特别是,作者表明,摄入咖啡因可降低女性中风,痴呆和抑郁症以及男性PD的风险。然而,咖啡因对男性和女性青少年都有增加睡眠障碍和焦虑增加有负面影响[211]。4.2.多酚类咖啡也是CGA(表1)的来源,CGA是一种羟基肉桂酸,具有抗氧化、抗菌和抗炎等促进健康的作用[212]。大多数摄入的CGA被水解为CA和奎宁酸,并被肠道微生物群进一步代谢为各种芳香酸代谢物[213]。关于CGA及其代谢物穿越血脑屏障的能力存在争议[214215]。然而,由于其抗氧化和抗炎特性而产生的神经保护作用之前已经被描述过[215]。正如咖啡因所提到的,CA和CGA是具有抗氧化特性和对多巴胺能神经毒性具有神经保护作用的咖啡成分[216,217],已被认为是降低与咖啡消费有关的PD风险的基础[218,219]。有趣的是,PD的主要症状之一是便秘,似乎在PD运动症状出现前10-20年已经出现[220],较低的排便频率预示着未来的PD危机[221]。此外,PD患者和动物模型中会发生神经变性,有力的证据表明PD可从ENS开始并通过迷走神经从那里扩散到CNS [222,223]。在最近的报告中,在鱼藤酮诱导的PD小鼠模型中测试了CA或CGA [224]。在该模型中,将小鼠皮下植入一个渗透微型泵,以2.5mg/kg /天的剂量给予鱼藤酮(相当于通过农药暴露于鱼藤酮的环境水平),持续4周。从鱼藤酮暴露前的第一个星期开始,直至暴露结束,每周5天施用CA(30mg/ kg/天)或CGA(50 g/ kg /天)。处死后评估治疗对中枢多巴胺能和肠神经元的作用,并在鱼藤酮治疗结束后1天进行治疗。此外,将大鼠肠神经元和胶质细胞的培养物暴露于鱼藤酮(1-5nM)或不暴露于CA(10或25 µM)或CGA(25 µM)。值得注意的是,除了对与PD相关的中心结构和细胞(即,黑色素多巴胺能神经元)产生有益影响外,和星形胶质细胞),这证明了CA或CGA的施用至少部分地阻止了鱼藤酮诱导的变化,鱼藤酮既影响了治疗小鼠肠肌层神经丛的神经元,也影响了肠神经胶质细胞。重要的是,所有这些作用均在体外复制。确切的机制尚不清楚,但有人建议CA和CGA预处理或CGA预处理可以增强神经胶质细胞的活性,从而响应鱼藤酮的暴露而产生抗氧化分子。尽管所使用的CA和CGA剂量可能比喝咖啡的人每天摄入的CA和CGA剂量高2-5倍,但结果显然令人鼓舞。实际上,作者建议,尽管CA和CGA对胃肠蠕动的影响,也许有可能使用一种以食物为基础的有前途的神经保护治疗策略来改善PD的运动症状和非运动症状,例如便秘。在本报告中未作具体评估[224]。在编写此手稿的最后阶段,Rogulja小组发表了一份报告[225],该报告显示,睡眠的有益效果与肠道健康之间有着关键的联系。他们证明严重的睡眠不足会导致果蝇和小鼠的肠道(而非大脑)中的ROS积累,这与果蝇的死亡有关(睡眠受限的短暂周期无法证明这一点)也在老鼠中)。重要的是,可以通过口服抗氧化剂化合物或通过抗氧化剂酶的肠道靶向转基因表达来预防所有这些作用。许多人使用含咖啡因的咖啡来保持清醒,尽管咖啡因可能有助于失眠[211],但咖啡的抗氧化剂成分(如褪黑素,这是Rogulja和合作者在上述研究中使用的抗氧化剂之一,[225])可能会阻止积聚。避免肠道中的ROS,避免自愿睡眠限制的有害作用。4.3.氨基酸及其衍生激素天然存在于咖啡中的化合物之一是色氨酸(Trp),它是饮食中必须提供的必需氨基酸。色氨酸通过钠依赖性中性氨基酸转运蛋白,钠依赖性中性氨基酸转运蛋白(B0AT-1)吸收,需要通过与血管紧张素转化酶2(ACE2)的相互作用来稳定色氨酸[226]。色氨酸的吸收导致分泌α-防御素,富含半胱氨酸的阳离子肽,对多种细菌和其他微生物具有抗生素活性,从而使饮食中的Trp成为肠道菌群稳态所必需的[227,228]。重要的是,Trp的异常吸收(可能是由于慢性应激期间ACE2的细胞表面下调所致[229]或被严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2)[230]感染)导致的表现结肠炎,例如腹泻[231]。这种氨基酸对于维生素B3(烟酸)的合成也是必不可少的,这种维生素的缺乏会导致糙皮病,这种疾病的特征在于腹泻,炎症和蛋白质营养不良,并伴有皮肤和中枢神经系统表现[232]。重要的是,最近的研究还表明,烟酸缺乏症可能与阿尔茨海默氏症,帕金森氏症和亨廷顿氏症有关;认知障碍;或精神分裂症[232]。一旦Trp被消化道吸收并从肠道吸收,它就可以在循环中使用(大部分结合白蛋白)并穿过BBB参与CNS中的5-羟色胺合成[233,234]。血清素是一种神经递质,可调节不同的生理方面,例如行为,学习,食欲和葡萄糖稳态[235]。全身5-羟色胺的百分之五是脑源性的[235],而大多数5-羟色胺(95%)是由胃肠道ECs中的Trp产生的[233]。 EC在胃肠道粘膜中充当感觉转导成分。进食,腔内扩张或传入迷走神经刺激后,EC释放5-羟色胺,其主要靶点是包括迷走神经在内的初级传入神经元的粘膜投射[236]。膳食和外周血清素不能穿过血脑屏障,这意味着与脑源性血清素相比,外周血清素具有不同的功能[235]。外周血清素通过作用于胰腺参与葡萄糖和脂质稳态的调节肝细胞和白色脂肪细胞上的β细胞[235]。血清素也参与内脏疼痛,分泌物的分泌和蠕动反射的调节,并改变在许多不同的精神疾病中也可以检测到这种激素的水平。某些胃肠功能紊乱的症状可能是由于中枢神经系统活性失调,外周水平(肠)失调或通过神经内分泌免疫刺激而两者结合(脑肠轴)引起的。另外,一些研究表明血清素在肝脏中的促纤维化作用,表明它与血小板衍生的生长因子协同作用可刺激肝星状细胞增殖[237]。从大脑中Trp合成的另一种神经递质是褪黑激素[238]。褪黑素在昼夜节律的控制中起着至关重要的作用,它还是一种强大的自由基清除剂和抗氧化剂[239]。咖啡是褪黑激素的来源,但该化合物在人体中的生物利用度较低(约3%)[240],咖啡因可降低内源性夜间褪黑激素水平[238],对睡眠时间和睡眠质量有重要影响[211]。 ]。GABA是CNS的主要抑制性神经递质,通常在许多大脑区域中以高浓度存在。在绿色咖啡豆中也可以找到它(表1)。尽管尚不清楚GABA穿过BBB的能力[241],但其止痛,抗焦虑和降压特性可能是由于对胃肠道受体,循环GABA或一定量的GABA可能通过胃肠道的局部作用所致。 BBB [196,242]。4.4.美拉德反应产物:黑色素膳食纤维和黑色素(后者也称为美拉德化膳食纤维[184])同样存在于咖啡中(表1),并在肠道甚至大脑中具有促进健康的特性。膳食中的黑色素与纤维相似,可以逃避胃肠道的消化,到达结肠,并成为肠道菌群的底物[243]。在肠道中,膳食纤维会增加粪便体积,有助于正常的肠功能和加速肠道运输[244]。不可消化的碳水化合物被微生物群发酵成SCFA,这些代谢物被归因于几种健康影响[196]。奇怪的是,对雄性Tsumura Suzuki肥胖糖尿病(TSOD)小鼠(一种代谢综合征的公认小鼠模型)进行的研究表明,咖啡因和CGA在每天服用这些化合物16周后,改善了血浆SCFA的分布。但是,在这项研究中,咖啡没有任何作用,可能是因为咖啡成分中的膳食纤维含量因品牌而异[245]。SCFA影响胃肠道上皮细胞的完整性,葡萄糖稳态,脂质代谢,食欲调节和免疫功能,并能够穿过血脑屏障[246]。有趣的是,人类研究报告称,膳食纤维可以从SCGs中分离出来,并具有生时作用[247],除了可以促进短期食欲和减少能量消耗[248]。此外,最近对14位健康受试者进行的一项随机交叉研究报告说,早餐时食用的咖啡类黑素减少了每日的能量摄入并调节餐后血糖和其他生物标志物[249]。5.结论咖啡是许多化合物的复杂可变混合物,其作用可能根据其来源,加工,生物利用度以及可能的协同和/或拮抗作用而变化。流行病学研究表明,咖啡冲泡可能对消化道产生多种影响,包括对粘膜的抗氧化剂,抗炎和抗增殖作用以及对肌肉层的促运动作用。但是,与其他人体系统和功能(即心血管系统,CNS)已知的形成鲜明对比的是,迄今为止积累的有关咖啡和特定咖啡衍生化合物对胃肠道整体或胃肠道影响的知识尽管胃肠道是第一个与摄入咖啡接触的身体系统,但事实上,整个器官中的不同器官以及对整个肠道壁中不同细胞类型所发挥的特定作用机制都非常缺乏。 。此外,咖啡及其衍生物对脑-肠轴健康(从情绪到神经变性)的影响直到最近才得到解决。咖啡被公认为是全球最受欢迎的饮料之一,也是交易量最大的产品,每天有数百万人消费咖啡[250]。此外,咖啡厂Coffee sp.。提供的功能远远超过传统饮料,其副产品,包括咖啡花,树叶,果肉,果壳,羊皮纸,生咖啡,银皮和SCG,已成为新功能食品的诱人潜在原料来源[251] 。希望,目前对咖啡和咖啡副产品的浓厚兴趣将有助于获得有力的科学证据,以阐明其在胃肠道中促进健康的特性的作用和作用机理。此外,有针对性的功能性食品可能很快就会开发出来,以专门保护或改善胃肠道和脑肠轴的健康。 作者贡献:概念化,R.A .;写作-原始草稿,A.I.-D.,J.A.U.,M.D.d.C.,R.A .;写作-审查和编辑,R.A。和M.D.d.C .;资金获取,R.A。和M.D.d.C.所有作者均已阅读并同意该手稿的发行版本。资金:项目“咖啡行业可持续发展的新知识”由法国国家调查委员会(CSIC)资助(201970E117); “针对结肠直肠癌患者的风险状况和全球福祉的新成分和有益食品的生产(TERATROPH,IDI-20190960)”和“新型咖啡副产品饮料,可实现脑肠轴的最佳健康( COFFEE4BGA)”由科学和创新部(PID2019-111510RB-I00)资助。机构审查委员会声明不适用。知情同意声明不适用。数据可用性声明数据共享不适用。致谢感谢YolandaLópez-Tofiño和Gema Vera在记录X射线图像和整个图像时所提供的技术帮助。利益冲突作者宣称没有利益冲突。缩略语[Ca 2+ ] i细胞内游离Ca 2+5-CQA5-O-咖啡酰奎尼酸ACF异常隐窝灶ACE2血管紧张素转换酶2层次分析法超极化后AKTAP丝氨酸/苏氨酸激酶Akt动作电位资料库蛋白激酶BATF-2激活转录因子2ATF-3激活转录因子3B 0 AT-1BBB钠依赖性中性氨基酸转运蛋白血脑屏障是巴雷特食管认证机构咖啡酸钙2+cAMP环磷酸腺苷单磷酸钙大车可卡因和苯丙胺调节的转录本注册会计师绿原酸CGRP降钙素基因相关肽国际会议钙诱导的钙释放中枢神经系统中枢神经系统COX-2环氧合酶2品质保证咖啡酰奎尼酸CRC大肠癌C反应蛋白C反应蛋白工商管理硕士二甲基苯并蒽DSS葡聚糖硫酸钠欧共体肠嗜铬细胞EGFENS表皮生长因子肠神经系统ERKf-EPSP细胞外信号调节激酶,快速兴奋,突触后电位加巴γ-氨基丁酸格尔德胃食管反流病GSK3βGST糖原合酶激酶3β谷胱甘肽S-转移酶他苏木精/曙红HIF-1缺氧诱导因子1HO-1血红素加氧酶-1HSP 70IARC热休克蛋白70国际癌症研究机构IBD炎症性肠病国际刑事法院卡哈尔间质细胞IKKIkB激酶白介素白介素iNOS诱导型一氧化氮合酶JNKMAPKMcl-1MCP-1c-Jun N-末端激酶促分裂原活化蛋白激酶髓样细胞白血病1甲基接受趋化蛋白-1SAPK应激激活蛋白激酶梅克·明格MAPK / ERK激酶N-甲基-N-硝基-N-亚硝基胍MP肠神经丛ND没有检测到核因子-kβ核因子-kβ氮氧化物一氧化氮合酶没有一氧化氮NR没有报告PAI-1纤溶酶原激活物抑制剂1局部放电帕金森氏病PTENPG磷酸酶和张力蛋白同源前列腺素PhIP2-氨基-1-甲基-6-苯基咪唑并[4,5- b ]吡啶ROS活性氧RP静息潜力RyRryanodine受体层次分析法超极化缓慢SARS-CoV-2严重急性呼吸系统综合症冠状病毒2美国足协短链脂肪酸SCG用过的咖啡渣EPS缓慢的兴奋性突触后电位SMP粘膜下丛SPP物质spp。STAT5TNF-R物种信号转导子和转录激活子5肿瘤坏死因子受体坏死因子肿瘤坏死因子TOPK色氨酸淋巴因子激活的杀手t细胞起源的蛋白激酶样蛋白色氨酸UDPUGT1A尿苷二磷酸UDP葡萄糖醛酸转移酶VACHT水泡乙酰胆碱转运蛋白血管内皮生长因子血管内皮生长因子贵宾血管活性肠肽WHO世界卫生组织ZO-1zonulin-1参考文献(可至原文查看)1. 鲁米斯,D。 K.Z. Guyton;格罗斯(Y.劳比-塞克雷坦(B.) El Ghissassi,F。 V. Bouvard;本布拉欣-塔拉(L. N.古哈;马托克,H。 Straif,K.饮用咖啡,伴侣和非常热的饮料的致癌性。柳叶刀·Oncol。 2016,17,877–878。 [CrossRef]2. 格罗索(Grosso)戈多斯,J。 Galvano,F.;Giovannucci,E.L.咖啡,咖啡因和健康结果:《雨伞评论》。年。版本号营养食品2017,37,131–156。 [CrossRef][PubMed]点击:查看咖啡及其成分对胃肠道和脑肠轴的影响(上) 查看更多医学文章 试用免费翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-01-28 18:38:54
1085
为什么中国火星探测器的降落地点让地质学家们兴奋不已
  科学家们将古老的泥火山,撞击坑,地下冰沙丘标记为朱荣梦想行程的潜在中转站。  Smriti Mallapaty 中国的火星探测器竹荣号尚未从着陆器上起飞并开始探索。信用:新华社/阿拉米   既然他们知道了中国朱荣火星探测器的一般着陆位置,科学家们便开始着手分析卫星图像和地质图,以查明有趣的特征。尤其重要的是可能的泥火山-一种火星探测器从未去过的地貌。  武汉中国地质大学的行星地质学家肖龙说:“我们要为火星车提出计划。”他说,现在中国各地的科学家将有诱人的机会来影响竹荣的旅程。  “许多团队将尝试计划遍历-在90天的任务中您将在什么时间范围内完成尽可能多的目标,”美国University of University行星科学家约瑟夫·米哈尔斯基(Joseph Michalski)补充道。香港。   在中国天文1号任务离开地球10个月后,周六北京时间凌晨7点过后,这辆漫游者被包裹在着陆器中,降落下来。直到着陆之前,潜在的着陆区-一个巨大的撞击坑-乌托邦-Planitia-跨越数千公里,这意味着科学家只能松散手指可能感兴趣的地点。  尚未有图
2021-05-19 18:24:11
312
微塑料无处不在—但是它们有害吗?
  科学家们急于研究海洋动物以及我们内部的微小塑料斑点。  林小志  从马里兰州的马洛西河收集的微塑料。信用:威尔·帕森/切萨皮克湾计划 李敦柱以前每天都在一个塑料容器里放微波午餐。但是,当环境工程师李和他的同事做出令人不安的发现时,他停了下来:塑料食品容器将大量的称为微塑料的细小斑点掉入了热水中。“我们感到震惊,”李说。李和其他研究人员在都柏林三一学院(Trinity College Dublin)去年10月1日报道,水壶和婴儿奶瓶也脱落了微塑料。研究小组计算得出,如果父母通过在塑料瓶内的热水中摇晃婴儿配方奶来制备婴儿配方奶,那么他们的婴儿每天可能会吞下超过一百万个微塑料颗粒。 李和其他研究人员还不知道这是否危险。每个人都吃和吸入沙子和灰尘,尚不清楚额外饮食的塑料斑点是否会危害我们。“英国的埃克塞特大学生态毒理学家塔玛拉·加洛韦(Tamara Galloway)说:“摄入的大部分食物都将直接穿过肠道,到达另一端。” “我认为可以说潜在的风险可能很高,”李先生谨慎地选择了自己的话。  近20年来,研究人员一直在担心微塑料的潜在危害,尽管大多数研究都集中在对海洋生物的危害上。英国普利茅斯大学的海洋生态学家理查德·汤普森(Richard Thompson)在他的团队在英国海滩上发现塑料微粒后,于2004年创造了这个名词,用以描述直径小于5毫米的塑料微粒。此后,科学家们在所见之处到处都看到了微塑料:深海中;在北极雪和南极冰中;在贝类,食盐,饮用水和啤酒中;飘到空中,或因雨水飘落在高山和城市上空。这些细小的碎片可能需要数十年甚至更长的时间才能完全降解。加洛韦说:“几乎可以肯定,几乎所有物种中都存在一定程度的接触。”  清洁工人从南非西开普省的阿尼斯顿海滩收集塑料颗粒。图片来源:汤姆·卡马乔(Tom Camacho)/科学图片库  对微塑料的最早研究集中在个人护理产品中发现的微珠,以及在被模制成物体之前可以逸出的原生塑料颗粒,以及从废弃的瓶子和其他大碎屑中慢慢侵蚀的碎片。所有这些都冲入河流和海洋:2015年,海洋学家估计全世界地表水中漂浮着15万亿至51万亿个微塑料颗粒。此后,人们已经发现了其他的微塑料来源:例如,道路上汽车轮胎上的塑料斑点会从衣服上脱落,合成微纤维会从衣服上脱落下来。这些颗粒在海陆之间吹来飞去,因此人们可能从任何来源吸入或吃掉塑料。  荷兰瓦赫宁根大学的环境科学家Albert Koelmans于3月2日报道说,从对空气,水,盐和海鲜中的微塑料的有限调查来看,儿童和成人每天可能摄入数十至十万种微塑料斑点。他和他的同事认为,在最坏的情况下,人们每年可能会吞噬掉一张信用卡的微塑料。 监管机构正在迈出第一步,以量化人们健康的风险-测量暴露程度。今年7月,加利福尼亚州环境保护局的一个分支机构加利福尼亚州水资源控制委员会将成为世界上第一个宣布量化饮用水中微量塑料浓度的标准方法的监管机构,其目的是在未来四年内对水进行监测并公开报告结果。  评估塑料小斑点对人或动物的影响是难题的另一半。说起来容易做起来难。超过100个实验室研究已经使动物(主要是水生生物)接触到了微塑料。但是他们的发现-暴露可能导致某些生物繁殖效率降低或遭受物理破坏-难以解释,因为微塑料具有多种形状,大小和化学成分,而且许多研究使用的材料与环境中发现的材料完全不同。  最小的斑点(称为纳米塑料)(小于1微米)使研究人员最为担忧(请参阅“按比例缩放的塑料”)。有些可能能够进入细胞,从而潜在地破坏细胞活性。但是这些粒子中的大多数对于科学家来说甚至都太小了。例如,这些食物并未计入Koelmans的饮食估算中,加利福尼亚州也不会尝试对其进行监控。  来源(工具和成本):S. Primpke等。应用 光谱。 74,1012至47年(2020年)。  一件事很清楚:问题只会加剧。每年生产近4亿吨塑料,预计到2050年,这种塑料的生产量将增加一倍以上。即使明天所有塑料生产都神奇地停止了,垃圾填埋场和环境中的现有塑料(估计约为50亿吨)仍将继续降解成无法收集或清理的微小碎片,不断提高微塑性水平。Koelmans将此称为“塑料定时炸弹”。  他说:“如果您问我有关风险的信息,今天我并不那么害怕。” “但是如果我们什么都不做,我会对未来感到担忧。”  伤害方式  研究人员有几种关于塑料斑点可能有害的理论。如果它们足够小,可以进入细胞或组织,那么它们可能只是被外来生物所刺激,就像长而细的石棉纤维一样,可能会刺激肺部组织并导致癌症。潜在的污染与空气污染平行:发电厂,汽车尾气和森林大火中产生的烟尘斑点称为PM 10和PM 2.5(粒径分别为10 µm和2.5 µm的颗粒物)会沉积在呼吸道和肺部,并且高浓度会损害呼吸系统。Koelmans指出,PM 10的含量仍然比空气中发现的微塑料的浓度高数千倍。  较大的微塑料更可能通过化学毒性产生负面影响(如果有)。制造商在塑料中添加了诸如增塑剂,稳定剂和颜料之类的化合物,其中许多物质都是有害的,例如,干扰内分泌(激素)系统。但是摄入微塑料是否会显着增加我们对这些化学物质的暴露,取决于它们从塑料斑点中移出的速度以及斑点在我们体内的传播速度—研究人员才刚刚开始研究这些因素。  在旧金山湾地区收集的用于研究的微塑料。信用:科尔·布鲁克森(Cole Brookson)  另一个想法是环境中的微塑料可能会吸引化学污染物,然后将它们输送到食用被污染斑点的动物中。但是动物无论如何都要从食物和水中摄取污染物,甚至吞咽时几乎没有被污染的塑料斑点也有可能帮助清除动物肠道中的污染物。马里兰州盖瑟斯堡市美国国家标准与技术研究院的海洋生物学家詹妮弗·林奇说,研究人员仍然无法就携带污染物的微塑料是否是一个重大问题达成共识。  也许最简单的危害模式-至少对于海洋生物而言-可能是生物吞噬了没有营养价值的塑料斑点,并且没有吃足够的食物来生存。Lynch也是檀香山夏威夷太平洋大学海洋废弃物研究中心的负责人,他对尸体进行了尸体解剖,这些尸体被发现死在海滩上,看着它们胆量中的塑料和组织中的化学物质。在2020年,她的团队完成了对3周龄以下的9头turtle孵化的分析。一只孵化器只有9厘米长,其胃肠道中有42块塑料。大多数是微塑料。  夏威夷海龟孵化后的照片显示在其微塑性胃内容物旁边。信用:珍妮弗·林奇  林奇说:“我们不相信他们当中有任何人是专门死于塑料的。” 但她想知道,孵化器是否可能难以按照所需的速度增长。“对于那些小家伙来说,这是一个非常艰难的人生阶段。”  海洋研究  研究人员在对海洋生物造成微生塑的风险方面做了最多的工作。英国普利茅斯海洋实验室的海洋生物学家佩内洛普·林德克(Penelope Lindeque)说,例如,在最小的海洋生物中,浮游动物在微塑料存在下生长速度较慢,繁殖较不成功:动物的卵较小,孵化的可能性较小。她的实验表明,繁殖问题源于浮游动物没有吃足够的食物3。  但是,由于生态毒理学家在知道水生环境中存在哪种微塑料之前就开始进行实验,因此他们严重依赖于人造材料,通常使用较小尺寸的聚苯乙烯球体,并且其浓度远高于所发现的调查结果(请参阅``对微塑料进行分类'')。    资料来源:自然分析  科学家已开始转向更符合环境的现实条件,并使用纤维或塑料碎片,而不是球形。一些人已经开始用模仿生物膜的化学物质涂覆测试材料,这似乎使动物更容易食用微塑料。  纤维似乎是一个特殊的问题。林德克说,与球形相比,纤维通过浮游动物所花费的时间更长。2017年,澳大利亚研究人员报告说,暴露于微塑料纤维的浮游动物产生的幼虫数量是通常数量的一半,而成年幼虫数量较小。纤维没有被摄入,但是研究人员发现它们干扰了游泳,并发现了生物体内的变形4。2019年的另一项研究5发现,暴露于纤维的成年太平洋mole鼠(Emerita Analoga)的寿命较短。     大多数实验室研究将生物暴露于一种特定大小,聚合物和形状的微塑料中。Koelmans说,在自然环境中,有机体会暴露于混合物中。在2019年,他和他的博士生Merel Kooi绘制了11种海洋,河流和沉积物调查中报告的大量微塑料,以建立水生环境中混合物的模型。  去年,两人与同事合作,在计算机模拟中使用此模型,预测鱼多久会遇到足够小的食用微量塑料,以及食用过多斑点影响生长的可能性。研究人员发现,在目前的微塑性污染水平下,鱼类在有微塑性检查位置的1.5%处存在这种风险6。Koelmans说,但是风险可能会更高。一种可能是深海:一旦到达那里并经常被埋在沉积物中,微塑料就不可能运到其他地方,也没有办法清理它们。  海洋已经面临许多压力,这使林德克更担心微塑料会进一步耗尽浮游动物种群,而不是它们会向上转移到食物链中以到达人类。“如果我们淘汰象浮游生物这样的东西,这是我们海洋食物网的基础,我们将更加担心对鱼类种群的影响以及养活世界人口的能力。” 人体研究  领先的研究人员说,尚无公开研究直接检查塑料斑点对人的影响。唯一可用的研究依赖于使细胞或人体组织暴露于微塑料中或使用动物(例如小鼠或大鼠)的实验室实验。例如,在一项研究7中,喂食大量微塑料的小鼠的小肠发炎。与对照组相比,两项研究中暴露于微塑料的小鼠的精子数量降低了8,幼崽的数量也更少,更小9。一些体外对人体细胞或组织的研究也表明有毒性。但是,就像海洋研究一样,尚不清楚所使用的浓度与老鼠或人类所接触的物质是否有关。大多数研究还使用了聚苯乙烯球,这并不代表人们摄入的微塑料的多样性。Koelmans还指出,这些研究是同类研究中的第一批,一旦有了确凿的证据,最终可能会成为异常值。还有更多的在体外比动物实验研究,但研究人员说,他们仍然不知道如何来推断的组织在整体动物可能的健康问题的固体胶斑点的效果。  发现塑料了吗?从美国西部的国家公园和荒野地区取样的这种毫米级放大图像中,灰尘,沉积物,微塑性纤维和微珠混杂在一起。图片来源:犹他州立大学Janice Brahney  围绕风险的一个问题是,微塑料是否可能残留在人体中,并可能在某些组织中积累。小鼠研究发现,直径约5 µm的微塑料可以留在肠中或到达肝脏。Koelmans和同事使用非常有限的数据说明小鼠排泄微塑料的速度,并假设只有一小部分1-10 µm的颗粒会通过肠道吸收到体内,Koelmans及其同事估计,一个人可能会在其体内积聚数千种微塑料颗粒。一生中的身体2。  一些研究人员已经开始探索在人体组织中是否可以找到微塑料。十二月,一个小组在一项研究中首次记录了这六个胎盘10,对此进行了记录。。研究人员用一种化学物质分解了组织,然后检查了剩下的东西,最后在其中4个胎盘中得到了12个微塑性颗粒。坦佩亚利桑那州立大学环境健康工程师罗尔夫·哈尔登说:“然而,收集和分析胎盘时,这些斑点并不是污染的结果,尽管他赞扬研究人员为避免污染所做的努力,其中包括保持运送病房内没有塑料物品,并表明通过相同样品分析获得的空白对照材料集未受到污染。他说:“结论性地证明给定的颗粒实际上起源于组织方面一直存在挑战。”  李说,那些担心自己暴露在微塑料中的人可以减少这种情况。他在厨具方面的工作发现,散落的塑料量很大程度上取决于温度-这就是为什么他停止在塑料容器中微波烹饪食物的原因。为了减少婴儿奶瓶的问题,他的团队建议父母可以用在非塑料水壶中煮沸的凉水冲洗消毒过的奶瓶,以洗去消毒过程中释放的任何微量塑料。他们可以在玻璃容器中制备婴儿配方奶粉,在牛奶冷却后填充奶瓶。该小组现在正在招募父母,为他们的婴儿尿液和粪便提供志愿者样品以进行微塑性分析。  纳米级  Halden说,最细小的颗粒能够穿透并在组织甚至细胞内徘徊,是最令人担忧的一种,需要在环境采样中给予更多关注。例如,一项研究11故意让怀孕的小鼠吸入极微小的颗粒,后来在胎儿的几乎每个器官中都发现了这些颗粒。“从风险的角度来看,这才是真正的关注点,也是我们需要更多数据的地方。”  要进入细胞,颗粒通常需要小于几百纳米。直到2018年,法国研究人员提出了1 µm的尺寸上限,才对纳米塑料做出正式定义。这种微小的尺寸足以保持分散在水柱中,在这里生物体可以更容易地吸收它们,而不是像大型的微塑料那样沉没或漂浮,法国图卢兹的保罗·萨巴蒂埃大学的分析化学家亚历山德拉·特·哈雷说。  但是研究人员对纳米塑料几乎一无所知。它们是看不见的,不能简单地sc起。仅仅对它们进行测量已经困扰了科学家。  研究人员可以使用光学显微镜和光谱仪(通过与光的不同相互作用来区分颗粒)来测量塑料颗粒的长度,宽度和化学组成,直至几微米。低于该规模,塑料颗粒变得难以与非塑料颗粒(例如海洋沉积物或生物细胞)区分开。瑞士非营利研究组织Sail and Explore Association的纳米材料科学家Roman Lehner说:“您正在大海捞针,但看起来像干草。”  使用红外光谱分析从德国奥尔登堡的一家废水处理厂提取的样品的伪彩色图像。从颜色中挑出的碎片是塑料聚合物。其他碎片包括橡胶,烟灰,沙子和植物纤维。资料来源:S。Primpke等。肛门 生物肛门。化学。410,5131-5141(2018)。     2017年,ter Halle及其同事首次证明了环境样品中存在纳米塑料:从大西洋12收集的海水。她从水中提取胶体固体,过滤掉任何大于1 µm的颗粒,燃烧掉残留的颗粒,然后使用质谱仪(将分子破碎并按分子量对碎片进行分类)来确认残余物中存在塑料聚合物。  但是,这没有提供有关纳米塑料确切尺寸或形状的信息。Ter Halle通过研究她在探险期间收集的两个退化的塑料容器的表面,获得了一些想法。她发现,前几百微米已经变成晶体和脆性。她认为,可能从这些表面脱落的纳米塑料也可能如此13。目前,由于研究人员无法从环境中收集纳米塑料,因此进行实验室研究的人员会磨碎自己的塑料,并希望得到类似的颗粒。    使用自制的纳米塑料有一个优势:研究人员可以引入标签来帮助跟踪测试生物体内的颗粒。莱纳及其同事准备了荧光纳米尺寸的塑料颗粒,并将其置于由人体肠壁细胞构建的组织下14。细胞确实吸收了颗粒,但是没有显示出细胞毒性的迹象。  莱纳说,发现存在完整组织切片中的塑料斑点(例如,通过活检)并观察任何病理影响,将是解决微塑性风险的最后一个难题。霍尔登说,这将是“非常理想的”。但是要到达组织,颗粒必须非常小,因此两位研究人员都认为,很难最终检测到它们。  收集所有这些数据将花费很多时间。Ter Halle与生态学家合作,量化了野外微量塑料的摄入量。她说,仅分析大约800个昆虫和鱼类样本中的大于700 µm的颗粒,就花费了数千小时。研究人员现在正在检查25-700 µm范围内的颗粒。她说:“这是困难而又乏味的,要获得结果将花费很长时间。” 她补充说,要查看较小的尺寸范围,“工作量是成倍增加的。”     在亚历山德拉·特·哈雷(Alexandra ter Halle)的一次海洋探险中收集的塑料样品。图片提供:Vinci Sato @ Expedition 7 Continent  没有时间可以浪费  研究人员认为,目前,环境中的微塑料和纳米塑料含量太低,无法影响人体健康。但是他们的人数会增加。去年9月,研究人员预测15,每年添加到现有废物中的塑料量(无论是仔细地在密封的垃圾填埋场中还是散落在陆地和海洋中)都可能从2016年的1.88亿吨增加一倍以上,到2040年达到3.8亿吨。然后,科学家们估计,其中约有1000万吨可能是以微塑料的形式存在的-这种计算不包括不断从现有废物中侵蚀掉的颗粒。  该研究的第一作者,华盛顿特区皮尤慈善信托基金会的Winnie Lau说,可以控制我们的一些塑料废物。研究人员发现,如果在2020年采用所有行之有效的遏制塑料污染的解决方案,并尽快扩大规模(包括转换为再利用系统,采用替代材料并回收塑料),则塑料废物的添加量可能会减少到1.4亿到2040年每年。  到目前为止,最大的收益将来自减少仅使用一次并丢弃的塑料。加洛韦说:“生产持续500年然后再使用20分钟的东西是没有意义的。” “这是一种完全不可持续的生活方式。”点击查看:更多分类文章更多医学分类文章使用文档翻译功能使用图片文字识别功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
2021-05-10 19:31:53
355
基因治疗可恢复罕见免疫缺陷儿童的免疫功能
DNA双螺旋位于DNA字母A,T,C和G的打印插图上。NHGRI Darryl Leja根据美国国立卫生研究院部分支持的研究,研究性基因疗法可以安全地恢复患有罕见的,威胁生命的遗传性免疫缺陷疾病的婴儿和儿童的免疫系统。研究人员发现,接受基因治疗的50名儿童中有48名在两到三年后保留了补充的免疫系统功能,不需要针对其状况进行其他治疗,这是由于腺苷脱氨酶缺乏症或ADA-SCID而导致的严重的联合免疫缺陷。这些发现今天发表在《新英格兰医学杂志》上。据估计,ADA-SCID在全世界200,000至1,000,000的新生儿中约有1个发生,其原因是ADA 基因的突变 削弱了健康免疫系统功能所需的腺苷脱氨酶的活性。这种损害使儿童容易感染严重的疾病。如果不加以治疗,则该疾病是致命的,通常在生命的头两年内。美国国立卫生研究院过敏与传染病研究所(NIAID)主任Anthony S. Fauci,医学博士说:“这些发现表明,这种实验性基因疗法可作为患有ADA-SCID的婴幼儿的潜在治疗选择。” “重要的是,基因疗法是一次性的程序,它为患者提供了开发功能全面的免疫系统的希望,并为他们提供了充实,健康的生活的机会。”患有ADA-SCID的人可以接受酶替代疗法治疗,但是这种疗法不能完全重建免疫功能,必须终身服用,通常每周一次或两次。理想情况下,从遗传匹配的同胞供体移植成血干细胞可以提供更持久的解决方案。但是,大多数人缺乏这样的捐助者。此外,干细胞移植会带来诸如移植物抗宿主病的风险, 以及化学疗法带来的副作用,这些化学疗法可以帮助供体干细胞在患者的骨髓中建立自身的地位。这项新研究评估了一种实验性慢病毒基因疗法,该疗法比以前测试的ADA-SCID基因疗法更安全,更有效。这种基因疗法包括将 ADA 基因的正常副本插入患者自身的造血干细胞中。首先,从患者的骨髓或外周血中收集干细胞。接下来,将无害病毒用作“载体”或载体,以将正常的 ADA 基因传递给实验室中的这些细胞。经过基因校正的干细胞然后被注入患者体内,该患者已经接受了低剂量的化疗药物白消安,以帮助细胞在骨髓中建立自己的位置并开始产生新的免疫细胞。由加利福尼亚大学洛杉矶分校(UCLA)和伦敦大奥蒙德街医院(GOSH)的研究人员开发的实验基因疗法,使用修饰的慢病毒将ADA基因传递给细胞。以前的ADA-SCID基因治疗方法依赖于另一种称为伽马逆转录病毒的病毒。一些接受了伽玛逆转录病毒基因疗法的人后来患上了白血病,科学家怀疑这是由于载体导致控制细胞生长的基因激活所致。慢病毒载体的设计避免了这种结果,并增强了基因向细胞内传递的有效性。结果来自三项单独的1/2期临床试验,两项在美国进行,一项在英国进行。由UCLA首席研究员Donald Kohn博士领导的美国试验在UCLA Mattel儿童医院和位于马里兰州贝塞斯达的NIH临床中心招募了30名年龄在4个月至4岁之间的ADA-SCID参与者。在GOSH进行的英国研究由主要研究者MBBS博士Claire Booth领导,招募了20名参与者,年龄从4个月到16岁不等。大多数参与者在基因治疗后获得并保留了强大的免疫功能(美国研究两年后为96.7%,英国研究三年后为95%),并且能够停止酶替代疗法和其他药物。在两名基因治疗不能恢复持久免疫功能的参与者中,一个参与者重新开始了酶替代疗法,后来又成功地从供体那里获得了干细胞移植成功,另一个参与者重新开始了酶替代疗法。慢病毒基因疗法总体上看来是安全的,尽管所有参与者都经历了一些副作用。其中大多数是轻度或中度的,可归因于参与者接受的化学疗法。尽管这三项研究之间存在一些差异,但研究人员在所有三项试验中均观察到了相似的结果。在美国试验中从骨髓中收集干细胞,在英国试验中从外周血中收集干细胞。在一项美国试验中,对10名儿童进行了基因校正的干细胞治疗,这些干细胞已被冷冻并随后解冻。另外两个试验使用了新鲜的干细胞制剂。将来,冷冻程序(称为冷冻保存)可以使干细胞更容易在远离患者家的制造工厂中运输和加工,然后运回当地医院,从而减少了患者长途跋涉前往医院的需要。专门的医学中心接受基因治疗。有关《新英格兰医学杂志》论文中描述的试验的更多信息,请访问ClinicalTrials.gov,其标识符为NCT01852071,NCT02999984和NCT01380990。研究性慢病毒基因疗法已获得Orchard Therapeutics的许可,尚未获得任何监管机构的批准。这项研究部分由美国国立卫生研究院(NIH)的三个研究所资助。国家心肺血液研究所;和国家人类基因组研究所。加州再生医学研究所,医学研究理事会,位于大奥蒙德街儿童医院的国家健康研究所生物医学研究中心,国家健康服务基金会信托基金和伦敦大学学院提供了额外的资金,并提供了Orchard Therapeutics。 点击查看:更多有关医学文章更多生物学分类文章使用文档翻译功能使用专业译文翻译 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:NIH
2021-05-12 18:49:39
276
地中海成年人咖啡消耗量及全因,心血管疾病和癌症的死亡率
  经过 劳拉·托雷斯·科拉多(Laura Torres-Collado)  劳拉·玛丽亚(LauraMaría)Compañ-Gabucio  桑德拉·冈萨雷斯·帕拉西奥斯(SandraGonzález-Palacios)  莱尔·诺塔里奥·巴兰迪亚兰(Leyre Notario-Barandiaran)  亚历杭德罗·昂西纳·卡诺瓦斯(AlejandroOncina-Cánovas)  耶苏斯·维奥克(JesúsVioque) ,*和ManuelaGarcía-dela Hera  1. 西班牙阿利坎特市卫生与生物医学研究所,西班牙伊萨比尔-乌姆(03010)  2. 西班牙国家流行病学联盟(Unidad deEpidemiologíade laNutrición),萨卢德·普布利卡(Departamento de SaludPública),米歇尔·埃尔南德斯大学(UMH),西班牙利亚·西恩西亚·吉内科洛尼亚历史大学(03550)  3.西班牙马德里萨洛德卡洛斯三世研究所(CIBERESP)的CIBEREpidemiologíay SaludPública(CIBERESP),西班牙马德里,28034  *应与之联系的作者。  收到:2021年3月17日  接受:2021年4月7日  发行时间:2021年4月9日  摘要:我们评估了西班牙成年人口的日常咖啡摄入量与全因,心血管(CV)和癌症死亡率之间的关联,同时考虑了咖啡摄入量和类型。我们使用了来自西班牙巴伦西亚营养研究的1567名年龄在20岁及以上的参与者的咖啡消费量和其他个人变量以及18年随访期间的死亡人数的基线数据。使用经过验证的食物频率调查表评估咖啡,咖啡因和脱咖啡因的总消费量。使用Cox回归模型估算调整后的危险比(HRs)和95%置信区间(CIs)。在18年的随访期内,有317人死亡。 115因CV疾病而82因癌症。与无消耗相比,每天消耗≤1杯咖啡和每天> 1杯咖啡与较低的全因死亡率风险相关,HR = 0.73(95%CI:0.56-0.97)和HR分别为0.56(95%CI:0.41-0.77)。与不饮酒的人相比,每天饮酒超过1杯的人的癌症死亡率较低,HR为0.41(95%CI为0.20–0.86)。关于咖啡的类型,仅含咖啡因的咖啡的总摄入量与随访12和18年时的全因死亡率较低相关,HR= 0.66(95%CI:0.46-0.94)和HR = 0.59(95%) CI:0.44-0.79)。总之,这项研究表明,适量饮用咖啡,尤其是含咖啡因的咖啡(每天1至6.5杯),与长期随访后较低的全因和癌症死亡率相关。在咖啡消费与CVD死亡率之间未发现显着关联。  关键词:咖啡;咖啡因不含咖啡因死亡;心血管疾病;癌症  1. 介绍  尽管全世界的咖啡消费量非常普遍,但与总死亡率较低有关,尽管这种关系还不完全一致,而且来自地中海国家的证据仍然很少[1]。咖啡的摄入与低密度脂蛋白(LDL-c)浓度升高有关[2],胰岛素抵抗[3],血压升高[4]和某些心血管疾病(CVD)的风险较高[4,5]。食用它并没有发现长期的副作用。最近发表的大多数研究报告说,习惯咖啡的摄入与某些疾病的发生率呈负相关,例如2型糖尿病[6,7],精神疾病[8,9],心血管疾病[10-12]和癌症[ [10,13,14],所有这些都是导致死亡的主要原因。  这些发现与Kim等人获得的结果一致。 [1]在最近的荟萃分析中,该研究包括来自不同国家的40项研究和3,852,651名受试者。在这项荟萃分析显示,咖啡摄入量与各种原因的死亡率,CVD和癌症死亡率之间存在非线性关系,每天摄入两杯咖啡的癌症死亡率最低(RR = 0.96),CVD最低的死亡率,每天2.5杯(RR= 0.83),全天最低死亡率为每天3.5杯(RR= 0.85),并且随着咖啡消费量的增加,死亡率没有进一步降低或增加[1]。  尽管咖啡可能是由于其某些成分的抗氧化和抗炎作用所致,但其降低死亡风险的机制尚不为人所知[10,11]。咖啡富含多酚,多酚具有抗氧化和消炎作用,可根据其化学结构分为类黄酮和非类黄酮[15,16]。一些荟萃分析显示,类黄酮和一些非类黄酮(如雌激素样活性较弱的木脂素)可能对心血管疾病和某些癌症具有有益作用[15],尽管仍需要更多有关特定化合物的证据。  在少数研究中,咖啡摄入量对预期寿命长和健康饮食的地中海人群的全因,CVD和癌症死亡率的作用进行了研究,但仍缺乏足够的证据。据我们所知,只有两项研究专门评估了西班牙成年人的咖啡消费与死亡率之间的关联[17,18],并且都显示咖啡消费与总死亡率和CVD死亡率之间呈负相关[17,18]。 。此外,在意大利最近发表的一项针对成年人的研究中,每天适量饮用3-4杯咖啡与降低全因和CVD死亡率的风险有关[19]。因此,我们在考虑了咖啡的数量和类型的情况下,对西班牙巴伦西亚成年人口的代表性样本中的咖啡消费与全因,CVD和癌症死亡率之间的关联进行了评估。  2. 材料和方法  2.1. 研究设计和人口  这项研究的数据来自1994年进行的瓦伦西亚营养调查(VNS)。调查方法在其他地方已有详细描述[20]。简而言之,VNS是一项基于代表性样本的健康,营养和体检调查,纳入了瓦伦西亚地区1811岁以上15岁及以上的成年人(参与率74.4%)。 20岁以下的参与者和没有咖啡消费信息的参与者被排除在本分析之外。因此,最终的分析是对年龄在20岁及以上的1567名参与者进行的,其中包括完整的信息(718名男性,849名女性)。我们获得了所有参与者的书面知情同意,圣胡安医院和米格尔·埃尔南德斯大学的伦理委员会批准了该研究。  2.2. 咖啡和膳食评估  我们使用经过验证的半定量食物频率问卷(FFQ)收集了饮食信息。 FFQ与Willett调查表[21]相似,该调查表已在西班牙的成人和老年人口中进行了修改和验证[22]。我们在VNS中使用了FFQ,它有93种食品,包括9个主要食品类别:乳制品,鸡蛋,肉和鱼,蔬菜,水果,面包和谷物,油脂,糖果和糕点,饮料和加工食品食物。 FFQ的有效性和可重复性先前已有描述[22],显示出令人满意的可重复性和有效性。我们将成年人口中的营养和食物摄入量估计与四个四个为期一周的饮食记录进行了比较。营养摄入量的一年有效性和再现性的平均相关系数分别为0.47和0.40。我们观察到总咖啡消费量具有良好的可重复性,相关系数为0.60。  我们询问了研究对象,在过去一年中,他们平均每隔多长时间食用一次每种食品的标准份量。 FFQ有9种可能的消费频率,范围从“每月不少于一次或少于一次”到“每个月六个或更多次”。其中包括两项以收集有关咖啡消耗量的信息:一项用于含咖啡因的咖啡,另一项用于无咖啡因的咖啡。我们定义了一杯典型尺寸的咖啡(浓缩咖啡为50毫升,速溶/冲泡/磨碎咖啡为125-150毫升),并计算出每天的总咖啡消费量为脱去咖啡因和含咖啡因的咖啡之和。我们根据参与者的总咖啡消费量将其分类为非饮酒者,每天饮酒1杯和每天饮酒> 1杯。  使用相对地中海饮食评分(rMED)[23]估算了每个受试者对地中海饮食的依从性[23],这是原始地中海饮食评分的一种变化[24,25]。在rMED中,不是使用中位数对每种成分进行评分,而是每1000大卡/天引用每种成分(以克计)的摄入量(以克为单位),并分为三分位数。对于构成MD的六个组成部分,我们分别为进气的第一,第二和第三分位数指定了值0、1和2。六个类别包括水果(包括种子和坚果),蔬菜(不包括土豆),鱼,豆类,橄榄油和谷物(包括全谷物)。乳制品和总肉类(包括加工肉类)的评分为负,可能是因为这些成分与MD不符(摄入量较高则得分较低)。由于假定适度饮酒会产生有益的影响,我们将其计算为二分变量:适度饮酒2分(女性每天5–25 g /天,男性10–50 g /天),更高或更高则为0点降低消费。最后,通过将9个组成部分的得分相加来估计每个参与者的rMED得分。分数范围从0–6分(低依从性),7–10(中度依从性)到11–18分(高依从性)。营养价值和能量摄入量可从美国农业部的食品成分表[26]和西班牙的其他公开来源中获得[27]。  2.3. 死亡率评估  在18年的随访期内,我们通过西班牙统计局和瓦伦西亚地区死亡率登记处的国家死亡指数检查了有关死亡日期和原因的信息。我们根据《国际疾病分类》(ICD 10)第10版对所有死亡原因进行了编码。由于死亡人数少,我们将死亡分为三大类,包括心血管疾病(ICD 10:I00-I99),癌症(ICD 10代码:C00-D49)和全因死亡率。全因死亡率类别包括任何原因造成的死亡以及前两个类别。  2.4. 其他变量  受过训练的现场工作人员使用结构化调查表,从所有参与者那里收集了有关社会人口统计学和其他生活方式变量(包括吸烟习惯,饮酒,健康状况,体育锻炼和慢性病)的基准信息。 分析中考虑了以下变量:性别(男人,女人),年龄(以年为单位),受教育程度(<小学;小学),体重指数(BMI),以千克为单位的体重除以所测得的平方以米为单位的身高(<25 kg / m2、25–30 kg / m2、30 kg / m2),腰围(健康范围:男性78–94 cm和女性64–80 cm;中度风险:94–102 cm男性和女性80-88厘米;以及增加的风险:男性> 102厘米,女性> 88厘米)[28],吸烟状况(从不,前烟民,当前),自我报告的休闲时主要身体活动时间(低,中–剧烈),每天看电视的总小时数和每天总睡眠时间(以小时数为单位)。我们还收集了基线时已存在的慢性疾病,糖尿病(否/是),高胆固醇(否/是)和高血压(否/是)的存在。在成年人群中,以前的研究表明,自我报告的疾病与病历中记载的疾病之间存在很高的一致性[29,30]。  2.5. 统计分析  统计学检验是双边的,意义确定为0.05。我们使用统计软件R.3.3.2(R统计学计算基金会,维也纳,奥地利,http://www.r-project.org,于2020年4月1日访问)进行了分析。  我们根据参与者的总咖啡消费量将其分类为非饮酒者,每天最多喝1杯(0.1-1.0杯)和每天超过1杯(1.1-6.5杯)的饮者。我们还根据咖啡的种类将参与者分类为不消耗咖啡,不含咖啡因或不含咖啡因。使用百分比和卡方检验描述和比较分类变量,对不同咖啡消耗量之间的社会人口统计学因素进行描述性分析,对于连续变量,我们使用均值,标准差和方差分析进行检验。  从基线的访谈日期到死亡或完成6年,12年和18年随访之日(以先到者为准),我们估计了每个随访参与者的人年。我们分析了随访(特设部门),第6、12和18年以及总,含咖啡因和不含咖啡因的咖啡消耗量与死亡率的关联和风险,以探索咖啡的短期,中期和长期影响,并进行调整对于其他变量。我们从所有类别的咖啡消耗量中与较低类别(无消耗,1杯/天,> 1杯/天)相比,通过每种食物消耗的Cox比例风险,获得了危险比(HRs)和95%置信区间(95%CI)。死亡原因,CVD和癌症死亡率。  提出了两种模型,其中一种针对年龄和性别进行了调整,并进行了多变量分析,其中我们进一步调整了一些文献中被认为是潜在混杂因素的因素,并且这些变量在双变量分析中显示p值<0.20。我们根据以下因素进行了调整:性别,年龄(以年为单位),受教育程度(<小学;小学),BMI(<25kg/ m2、25–30 kg / m2、30 kg / m2),腰围(健康范围:男性78-94厘米,女性64-80厘米;中度风险:男性94-102厘米,女性80-88厘米;风险增加:男性>102厘米,女性>88厘米] [28],吸烟(从不,前吸烟者,当前),业余时间自我报告的主要身体活动(非常低,主要是坐姿;低,中度到剧烈运动),坚持地中海饮食(rMED),看电视时间每天,每天的总睡眠时间(以小时为单位),以及糖尿病(否/是),高胆固醇(否/是)和高血压(否/是)。  时间函数上缩放后的Schoenfeld残差的非零斜率表明满足了比例风险假设。我们计算了似然比检验(LRT),以将咖啡消费的总体重要性作为一个分类变量进行估算,并计算了趋势测试,以评估作为一个连续术语的咖啡总消费量的剂量反应。  3. 结果  表1.显示了根据咖啡消费量进行研究的人群的主要特征。在1567名参与者中,有78%是喝咖啡的人,其中37.7%是每天喝1杯以下的咖啡的人,而40.3%的人报告喝了多于1杯的咖啡。每天喝杯咖啡。通常,每天饮酒> 1杯的参与者更可能是当前吸烟者,受过高等教育,花更少的时间看电视,以及自我报告的糖尿病和高血压的患病率较低。表1.在EUREYE-西班牙和西班牙的巴伦西亚营养研究中,年龄在20岁及以上的参与者中,咖啡总消费量的社会人口统计学和生活方式特征(n= 1567)。缩写:VNS,巴伦西亚营养调查; SD,标准偏差;BMI,体重指数;rMED,地中海相对饮食指数。卡方检验(分类变量)和方差分析(连续变量)的1个p值(p)。*腰围:健康范围(男性78-94厘米,女性64-80厘米),中等风险(男性94-102厘米,女性80-88厘米),风险增加(男性和女性> 102厘米女性>88厘米)。 3自我报告的糖尿病(否/是),高胆固醇(否/是)和高血压(否/是)。 如表2所示,在随访的头六年(9169.4人年),发生了85例死亡。在这些死亡中,有31人(占36.4%)来自心血管疾病,有25人(占29.4%)归因于癌症。在随访的12年(17,693.7人年)中,我们记录了216例死亡。 77(35.6%)因CV疾病而致56(25.9%)因癌症。最后,在总共18年的随访中(25,526.9人年),我们记录了317例死亡。CVD(115)(36.3%),癌症(82)(25.9%)。图1显示了研究期间根据咖啡消耗量全因死亡率的累积发生率曲线。在累积发生率曲线中,咖啡饮用者的死亡率低于非饮用者。表2.西班牙巴伦西亚营养调查参与者的咖啡总摄入量与各种原因,心血管疾病和癌症死亡率之间的关联。1根据年龄,性别,教育水平(<小学,初等),BMI(<25、25.0–29.9、30),腰围(健康,中度和增加的风险),睡眠时间(小时/天),吸烟状况(当前;过去和从未),自我报告的糖尿病(否/是),高胆固醇(否/是),高血压(否/是),相对地中海饮食,休闲时的身体活动(低,中-高) )和看电视(小时/天)。来自似然比检验的2 p值。来自p趋势检验的3个p值。  图1.根据西班牙瓦伦西亚营养调查(n = 1567)的所有原因所致咖啡总消耗量,随访18年后的死亡累积发生率曲线。  表2显示了咖啡摄入的所有原因,CVD和癌症死亡率的HR。在随访期间,咖啡的摄入与全因死亡率成反比。经过六年的随访,与不喝酒的人相比,喝1杯普通咖啡的饮酒者的死亡风险显着降低了22%,而每天喝酒超过1杯的饮酒者的喝酒风险降低了56%。死亡,HR = 0.44(95%CI:0.22-0.85)。同样,在12年的随访中,每天饮酒量超过一杯的饮酒者的全因死亡率较低,HR = 0.67(95%CI:0.46-0.98)。经过18年的随访,与不饮酒的人相比,每天饮酒最多1杯和每天饮酒超过1杯的饮酒者的全因死亡率降低了,HR= 0.73(95%CI:0.56– 0.97)和HR = 0.56(95%CI:0.41-0.77),具有显着的剂量反应趋势(p-趋势= 0.001)。随访6年和12年后,因癌症和心血管疾病导致的死亡人数太少,尽管经过18年的随访,每天摄入量超过1杯的人群的癌症死亡率却呈负相关, HR 0.41(95%CI:0.20–0.86)。  表3显示了咖啡消费类型与随访6、12和18年死亡率之间的关系。与非饮酒者相比,饮用咖啡因的咖啡在随访12和18年时显示出较低的风险。-造成死亡率; HR = 0.66(95%CI:0.46-0.94)和HR= 0.59(95%CI:0.44-0.79)。有证据表明,在18年的随访中,含咖啡因的咖啡与癌症死亡率呈负相关(p = 0.10)。在研究期间,无咖啡因的咖啡消费与全因,CVD或癌症死亡率之间没有统计学上的显着关联。  缩写:HR,危险比; CI,置信区间; CVD,心血管疾病。 1根据年龄,性别,教育水平(<小学,初等),BMI(<25、25.0–29.9、30),腰围(健康范围,中等风险和高风险),睡眠时间(小时/天)进行调整的Cox回归模型),吸烟状况(当前;过去和从未),自我报告的糖尿病(否/是),高胆固醇(否/是),高血压(否/是),相对地中海饮食,休闲时的身体活动(低,中度)–高)和看电视(小时/天)。 2任何咖啡消费。来自似然比检验的3 p值。剩下部分文章内容  点击查看:使用专业医学翻译  更多医学分类文章  使用文档翻译功能   免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。  来源于:mdpi
2021-04-19 17:22:09
435
太阳耀斑对地球磁层的影响
    由Ingrid Fadelli,Phys.org     太阳耀斑影响整个地理空间的图示。信用:刘静。  行星地球被称为磁层的磁场系统包围。这个巨大的彗星状系统使来自太阳的带电粒子偏转,从而保护我们的星球免受有害粒子辐射的侵害,并防止太阳风(即从太阳高层大气释放的带电粒子流)侵蚀大气层。  尽管过去的研究已经收集了足够的证据证明太阳风会对地球磁层产生影响,但是人们对太阳耀斑的影响(即太阳上的电磁辐射突然爆发)知之甚少。太阳耀斑是高度爆炸性的事件,可能持续几分钟到几小时,并且可以使用X射线或光学设备检测到。  中国山东大学和美国国家大气研究中心的研究人员最近进行了一项研究,研究了太阳耀斑对地球磁层的影响。他们的论文发表在《自然物理学》上,提供了新的宝贵见解,可以为更好地了解地球空间动力学铺平道路。地球空间是最接近地球的外层空间部分,包括高层大气,电离层(即大气的电离部分)和磁层。  进行这项研究的研究人员之一刘晶教授对Phys.org表示:“磁层位于电离层上方,是离地面1000公里以上的完全电离的空间区域。” “该地区被太阳风包围,并受到地球磁场和太阳风磁场的
2020-12-18 18:58:14
331
英文文档快速翻译中文,英文翻译教程
在这个互联网发达的时候,日常接触英文概率很大吧,无纸化办公让更多的英文电子文档出现在日常生活中,所以如何快速翻译英文文档是一个必须上心的事,因为如果你不是一名专业译者,一天多数时间发生在翻译文档上,那效率可太低了。今天给大家推荐一个快速翻译文档的教程!文档翻译教程:打开【福昕翻译官网】—找到【文档翻译】功能,将需要翻译的文档上传。文档上传后选择翻译需求、翻译语言,按需翻译,最后点击【开始翻译】推荐选【高保真】文档翻译:下载译文保留原文样式和排版,而且高性价比,低成本就可以获取舒服流畅的阅读体验。当然了对排版要求高的文档也有专业版翻译。 点击开始翻译后,系统将快速将文档翻译成中文,文件详情信息右侧可操作在线阅读译文和下载,下载译文可选择高保真和双语译文,下图为高保真文档译前后对比,左侧为原文右侧为译文。简单的两步操作,一键就可以将文档翻译成中文,27种语言互译,常用格式文档PDF、Word、PPT、Excel都可以进行一步操作翻译,低成本就可以享受高质量的舒服流畅的阅读体验,专业人做专业事,将文档翻译交给福昕翻译,高效率阅读外文! 更多教程:图片翻译、截图翻译、拍照翻译、免费图片翻译简单搞定!
2021-04-09 18:04:58
4218
图片翻译怎么办?免费图片文字识别功能了解一下
在这个全球互联网时代,手机轻轻松松购物海外产品,生活中外语出现的频率越来越高,比如网购产品的说明书、纸质书籍、美食店的餐单等等,那这个情况下如果英语不好或者是不认识的外语该怎么办呢?图片翻译怎么办?免费图片文字识别功能了解一下。使用教程:打开福昕翻译官网,一个高效、准确、安全的多功能翻译服务平台,点击导航栏【文字翻译】功能,操作图片翻译。 方式1:复制图片,直接粘贴或快捷键Ctrl+v图片在下区域直接进行翻译。方式2:点击底部【上传图片】选择图片上传后点击“翻译”开始翻译。下图是我试着翻译一份英文说明书,左侧为图片及图片内识别的文字内容,右侧为翻译后的中文,译后内容流畅,原文译文均可复制,27国语言免费互译,记的收藏福昕翻译官网,使用更多的免费翻译功能。
2021-03-31 17:18:25
662