福昕翻译

>

生物学

2型糖尿病患者的研究和新治疗策略的新方向
经过:艾哈迈德·阿尔·布拉比(Ahmad Al-Mrabeh)英国纽卡斯尔,纽卡斯尔NE2 4HH,磁共振中心,转化中心和临床研究所,医学科学学院学术编辑:Istvan Kovanecz生物医药 2021,9(2),226;收到:2020年12月31日/修订:2021年2月9日/接受:2021年2月17日/发布:2021年2月23日(本文属于《糖尿病并发症》:从病理生理学到新型治疗方法) 摘要:心血管疾病(CVD)仍然是2型糖尿病(T2DM)患者的主要问题,而血脂异常是这两种代谢疾病的主要驱动因素之一。在这篇综述中,在肝脂质代谢异常和心血管健康的背景下,讨论了T2DM中β细胞功能障碍和恢复的主要病理生理和分子机制。(i)在正常健康中,胰腺持续暴露于营养刺激下会增加对β细胞的需求。从长远来看,这不仅会给β细胞造成压力并降低其胰岛素分泌能力,而且还会减弱对胰岛素的细胞反应。(ii)在糖尿病前期,β细胞通过胰岛素的过度分泌来补偿胰岛素抵抗。这增加了压力β细胞的代谢负担,并改变了肝脂蛋白的代谢和脂肪组织的功能。(iii)如果不清除这种具有脂毒性的高胰岛素环境,则β细胞开始失去功能,并且由于较低的脂蛋白清除率,CVD风险会增加。(iv)一旦开发出来,T2DM可以通过减肥来逆转,这一过程最近被称为缓解。然而,卡路里限制导致脂蛋白代谢正常化并恢复β细胞功能的精确机制尚未完全建立。了解缓解期间β细胞衰竭和恢复的病理生理和分子基础对于减轻β细胞负担和功能丧失至关重要。这篇综述的目的是强调脂蛋白输出和T2DM中脂质驱动的β细胞功能障碍之间的联系,以及这与心血管健康的关系。第二个目的是了解减肥后β细胞恢复的机制,并探索新的研究领域,以开发出更有针对性的未来疗法来预防T2DM和相关的CVD事件。 关键词:2型糖尿病;脂蛋白代谢;β细胞功能障碍;脂毒性;脂肪组织;减肥;糖尿病缓解;心血管疾病;新疗法1.简介2型糖尿病(T2DM)已成为全球关注的问题。它影响到世界人口的4.25亿,并加倍在未来的几十年[预测1,2]。西方国家平均有10-15%的国家卫生预算用于管理T2DM及其并发症,包括心血管疾病(CVD),这是全球主要的死亡原因[3]。然而,现有的药物在控制这一流行病相对无效,且有迫切需要其他手段来管理T2DM和防止心血管疾病[发展4,5,6]。对于患有T2DM的人和科学家们来说,仍然困扰着的主要问题之一是:“即使我不像没有糖尿病的朋友那么重,我为什么也要开发T2DM?” 有许多因素影响该疾病的病理生理,包括体重,脂肪量,年龄,种族,性别,遗传因素和环境因素[7]。但是,这些因素中的大多数是可以改变的,并且在很大程度上由生活方式干预(包括饮食和体育锻炼)控制。虽然它被认为是一个危险因素,肥胖本身并不致病T2DM [的8,9]。众所周知,大多数超重人群不会患上T2DM [10]。这种“代谢健康”表型是通过以更高的皮下相关的等位基因遗传决定的,并降低异位脂肪沉积[11,12]。另一方面,正常体重的人可能由于皮下脂肪储存能力有限,并伴有胰腺内的胰岛素产生细胞(β细胞)对这些不良代谢状况的敏感性而患上了T2DM,而个人脂肪阈值的概念解释了这种现象[9]。皮下脂肪组织代谢允许良好耐受的脂肪储存,并且这可以部分解释为什么有些人在正常体重指数开发T2DM(BMI)[9,10]。事实上,妇女通常对T2DM和心血管事件较不敏感,并且在妇女大皮下脂肪面积可以提供过量的甘油三酯保护β细胞和其他易感组织免受过量脂质[的有害影响的存储安全区7,13,14]。对胰岛素或生存的不利的代谢条件β细胞的能力高需求期间相关于增加质量和功能的β细胞的能力的遗传因素应考虑[15,16]。动物研究工作支持的皮下脂肪和β细胞的易感性的遗传基础的有益效果,以增加的葡萄糖水平和脂肪酸在肥胖和2型糖尿病[17,18]。在脂肪营养不良的小鼠模型(A-ZIP / F-1)中,皮下脂肪的移植使肝脏脂肪水平恢复到正常并调节了血糖水平[19]。此外,对来自祖克糖尿病脂肪(ZDF)大鼠模型的分离胰岛的预融合研究表明,脂肪酸和葡萄糖的同时预融合在纯合大鼠中引起β细胞功能障碍,而在杂合同窝动物中则没有[18]。全基因组关联研究(GWAS)也强调了皮下脂肪在肥胖和2型糖尿病中的保护作用[12]。迄今为止,大多数在T2DM鉴定多态性的都涉及到β细胞分泌功能,而不是胰岛素函数本身[20,21]。但是,应该认识到,当前的研究确定了不到10%的遗传因素有望导致T2DM的病理生理,并且预计将来会发现更多的遗传基因座[15]。基于从糖尿病缓解期临床试验(直接)最近的证据的基础上,减肥治疗2型糖尿病,目前纳入英国国民保健系统(NHS),从而降低心血管疾病的风险[4,5]。然而,实现和维持体重减轻是困难的,并且需要强有力的动力和长期支持以坚持饮食条件并防止体重减轻。此外,这种方法并不适合所有人,包括那些体重正常的人。迫切需要开发更具针对性的T2DM缓解策略,而无需大量减轻体重。“脂毒性”是最广泛接受的假设来解释的β细胞功能障碍的基本机制在T2DM之一[16,22,23,24]。正常脂质体内平衡的维持是通过体内许多器官(包括肝脏,胰腺和脂肪组织)之间的串扰实现的。图1是可能与T2DM中胰腺功能有关的脂质相关因子的示意性假设表示。这篇综述概述并讨论了血脂异常和心血管健康的背景下T2DM中β细胞功能障碍和恢复的主要病理生理和分子机制。此外,它将突出显示新的领域,以供将来研究开发针对T2DM的新颖疗法。是否可以在早期阶段阻止脂蛋白递送的这些有毒脂肪酸和脂质中间体的β细胞摄取,以保护β细胞并最大化其存活率,这需要进行研究。图1. 2型糖尿病患者肝脏极低密度脂蛋白甘油三酸酯(VLDL-TG)出口与胰内脂肪相互作用的示意图。胰腺功能是通过内分泌和外分泌区室之间的协同作用来实现的。脂质代谢异常是影响整个胰腺结构和功能的代谢事件的驱动因素。每个彩色三角形的范围代表该参数的功能程度(灰色表示功能丧失)。脂质驱动的变化可能导致2型糖尿病(T2DM)β细胞功能异常和腺泡细胞质量下降,这可能与肝脏VLDL-TG的输出和胰腺内脂肪的增加有关。β细胞:Beta细胞;VLDL-TG:极低密度脂蛋白甘油三酸酯;FGF-21:成纤维细胞生长因子21;NEFA:非酯化脂肪酸;BCAAs:支链氨基酸;GDF-15:生长分化因子-15;GLP-1:胰高血糖素样肽1 ; C-myc:细胞性骨髓瘤病致癌基因;IFG-1:胰岛素样生长因子-1;DNL:新生脂肪形成;ApoE:载脂蛋白E,ApoC-III:载脂蛋白C-III;SAT:皮下脂肪组织;增值税:内脏脂肪组织。 2. T2DM的脂质代谢和病因改变过量的热量摄入和异位脂肪沉积是T2DM的病理生理学[主要决定因素25,26,27,28 ]。肥胖本身,定义为固定切断的身体质量指数的(BMI),是不致病因素[8,9],和超重的人患有糖尿病释放可具有与安全脂肪储存并[a“代谢健康”表型12,29]。另一方面,那些在较低BMI时患T2DM的人可能具有(i)有限的储存能力或紊乱的脂肪组织功能,(ii)对有毒脂质代谢产物的敏感性不同,以及(iii)在脂肪过程中未能适当增加β细胞的质量组织扩张和对胰岛素的需求增加[ 15,29,30 ]。在T2DM,脂质代谢异常,直接关系到极低密度脂蛋白(VLDL)由肝脏[生产过剩31,32,33 ]。这是通过转录因子激活脂肪生成基因,包括碳水化合物反应元件结合蛋白(ChREBP基因)和固醇调节元件结合蛋白1C(SREBP1c),这是由葡萄糖和胰岛素,分别激活[表达加速34,35 ]。因此,肝脂肪酸从头合成(DNL)的发生率在T2DM大幅度上升下血糖和胰岛素[水平升高34,36,37]。肝功能对于通过脂蛋白中脂肪的输出(VLDL-TG)以及从循环中吸收游离脂肪酸的摄取来调节脂类代谢至关重要[31]。然而,这种机制在T2DM [障31,32]。由于肝脏无法维持脂肪吸收和输送之间的平衡,因此当皮下贮库无法容纳更多的甘油三酸酯时,多余的脂肪将被异位储存。因此,非酒精性脂肪肝病(NAFLD)是常见的,并且直接参与T2DM [发病机制38,39,40,41]。过多的脂肪不仅会损害肝脏调节血糖水平的功能,还会溢出到其他异位部位,包括胰腺和肌肉,从而干扰β细胞功能和细胞胰岛素信号传导。使用磁共振成像(MRI)和脂肪乳输注技术,我们已经报道的肝脂肪和肝VLDL-TG生产T2DM主要增加升高的水平,并认为这是糖尿病的缓解后归一化[ 26,27,42 ](图2)。如果DNL是肝脂肪过多积聚和肝VLDL-TG产生的驱动因素,则有望在T2DM缓解期间减少,这可能是未来预防和缓解计划的目标。图2. 2型糖尿病缓解和复发期间脂质参数和β细胞功能的变化。从基线的变化在空腹血糖(甲),空腹血浆胰岛素(乙),肝脏脂肪(Ç),肝VLDL1-TG生产(d),空腹VLDL1-TG(É),总血浆甘油三酯(TGS)(˚F),5个月时的胰腺内脂肪(G)和β细胞功能(H)(应答者n = 38;复发者n= 13),12个月(分别为n= 28 /n= 13)和24个月(n= 20 /n= 13)。响应者以黑色实线表示,重复器以虚线表示。虚线是y值= 0时的网格线。显示了基线和每个时间点之间的配对数据。数据以平均值±SEM表示,除了第一阶段胰岛素(IQ范围的中位数)与复发者5个月的比较:*p<0.05,**p<0.01,***p<0.001。该图已获得许可[43]。 肝脏的另一重要功能是摄取和清除血液中的脂蛋白残留物,这是由富含甘油三酸酯的脂蛋白分解代谢产生的。这包括从循环中去除乳糜微粒残留物,中等密度脂蛋白颗粒(IDL)和高度动脉粥样硬化的低密度脂蛋白颗粒(LDL)。该过程由肝细胞上的某些受体介导,并受几种载脂蛋白(包括apoB,apoE和ApoC-III)的功能控制。因此,肝功能是CVD的主要决定因素。的重量损失如何逆转脂肪肝和实现的基本机制糖尿病的缓解在很大程度上仍然不清楚[ 10,27,43]。从啮齿类动物的研究最近数据肝蛋白质的ε同种型的激活突出显示的二酰基甘油(DAG)的作用激酶C(PKCε),这损害胰岛素的功能,并且报告重量损失来逆转该过程[ 44,45,46 ]。另外,长链的饱和脂肪酸也有报道激活Toll样受体4(TLR-4)和产生有毒的神经酰胺抑制胰岛素信号[ 46,47,48 ]。胰岛素是脂质代谢的主要调节剂。已知通过抑制激素敏感性脂肪酶(HSL)的功能来抑制脂解以维持非酯化脂肪酸(NEFA)的水平[ 49 ]。胰岛素通过下调ApoC-III和微粒体甘油三酸酯转移蛋白(MTP)的转录间接地调节肝VLDL的产生[ 50 ]。它也是转录因子叉头框蛋白(FoxO1的),其除了糖异生的调节上调载脂蛋白C-III和MTP的表达的调节剂,并由此由肝脏[增强脂化和VLDL分泌51,5]。小鼠β细胞中ApoC-III的表达受损胰岛素分泌[ 53],而FoxO1表达保护β细胞免受不良代谢条件的影响[54]。此外,原蛋白转化酶枯草杆菌蛋白酶kexin 9型(PCSK9)可能对T2DM的脂质代谢和β细胞功能有影响,并且使用抗PCSK9单克隆抗体可能在将来预防新发糖尿病。目前缺乏[55]。T2DM中的β细胞功能异常是毒性脂质的结果还是与β细胞自身或其他器官产生的其他效应蛋白有关仍是一个悬而未决的问题,这是目前研究的一个活跃领域。肥胖和T2DM中已知缺氧和氧化应激[ 56]。这种新的氧化还原环境可能是改变脂蛋白代谢和反应性脂质种类生成的起始因素,继而改变了脂肪组织的功能和β细胞的生物学特性,以在这些脂毒性条件下生存。因此,在糖尿病的发展和缓解期间对脂蛋白和相关脂质产品的生化变化的研究可能会为新的治疗目标指明道路。在这方面,使用先进的质谱技术进行的蛋白质组学和代谢组学研究将揭示脂蛋白和脂质相关分子的生物化学和功能的潜在变化。 3.脂质毒性和β细胞功能障碍β细胞功能的丧失是T2DM发病机理的关键因素。尽管对术语的争论,“脂毒性”仍然是最被广泛接受的假说来解释β细胞功能障碍的2型糖尿病[16,23,24,57]。本文旨在对脂质对胰腺和β细胞功能的不良影响的证据进行综述,但未详细涵盖“脂毒性”或“糖毒性”。有关更详细的信息,最近的其它评论覆盖细胞和分子水平[话题16,23,24,58,59,60]。在正常生理条件下,脂肪酸是已知的,从胰β细胞[刺激胰岛素分泌61,62]。因此,饱和脂肪酸是现代饮食的主要组成部分,可能是基础胰岛素过多的诱因。反过来,这允许包括胰岛素抵抗,NAFLD和血脂异常在内的一系列主要代谢异常[59]。各种假说解释在T2DMβ细胞功能的糖脂毒性效应已经假定,包括细胞凋亡,内质网(ER)应激,氧化应激,炎症,线粒体功能障碍,自体吞噬和去分化[16,22,23,63,64]。然而,如何毒性脂质可诱导应力和β细胞的功能障碍,最终的精确机制仍然极为重要要建立[7,22]。关于“脂毒性”的大多数可用数据基于对β细胞系或分离的胰岛的体外研究,并且大多数证实了棕榈酸酯在与高浓度β细胞孵育时对ER应激或细胞凋亡的有害作用[65,66]。与任一油酸(C18:1)组合:β细胞与棕榈酸(0 C16)一起温育或花生四烯酸(C20:4)防止了诱导单独棕榈酸[所述细胞损伤65,67,68]。在另一方面,孵育β细胞与花生四烯酸增强β细胞增殖和在培养的细胞系和β细胞[胰岛素分泌增加67,68]。重要的是要考虑到所有这些体外研究都使用了生理条件下不会遇到的高浓度脂肪酸,因此,尚无具体的体内证据证明所提议的脂肪酸对人的脂毒性作用[57]。在生理条件下,β细胞会暴露于包括葡萄糖,脂肪酸和氨基酸在内的多种营养物质的混合物中,因此Prentki等人最近提出了“营养压力”一词。比“脂毒性”或“糖脂毒性”更合适[23]。据报道,脂肪酸基于脂肪酰基链中的碳数和饱和度而导致β细胞功能障碍。饱和脂肪酸与长链(即,C16:0棕榈酸)已经报道了诱导细胞死亡或细胞凋亡,而不饱和脂肪酸(即,C18:1油酸)也相反的作用[59,60,68,69]。在支撑这些细胞的研究结果的,它已经证明,棕榈酸诱导ER应力是由硬脂酰基-CoA去饱和酶和ELOVL6的表达在啮齿动物中调制的[70,71]。在β细胞脂毒性体内工作在30年前被率先由Roger H. Unger的在啮齿类动物中[18,72]。在ZDF大鼠中,胰岛的甘油三酸酯含量在T2DM发生期间,高血糖发生发生前几周增加了10倍,并且与循环脂肪酸密切相关。另外,胰岛脂肪的这种增加与缺乏葡萄糖刺激的胰岛素分泌和β细胞的GLUT-2的低表达有关[18]。使用相同的模型,发现在年长的动物中输注脂质和葡萄糖会降低β细胞功能,而在年幼的动物中则不会[73]]。但是,重要的是要考虑脂质体内主要含有不饱和脂肪酸,据报道该不饱和脂肪酸对β细胞没有毒性作用。的脂肪酸脂毒性作用的证据是在人类不太显著,虽然有关于血糖的2型糖尿病的协同作用和脂肪酸对β细胞功能障碍[总协议23,57,74]。细胞在葡萄糖和脂肪酸代谢之间切换的“代谢僵硬性”是众所周知的[75],这得到了我们最近的间接量热数据的支持,该数据显示脂质氧化的减少伴随着T2DM缓解后葡萄糖氧化的增加[27]。它最近报道,棕榈酸不是在啮齿类动物中[有效燃料β细胞76,77],这可能部分解释了T2DM中的β细胞功能异常。一些观察和脂质输液研究报告NEFA和人类的胰岛β细胞功能之间的关联,而其他没有发现这样的证据[23,57,78,79,80]。有趣的是,使用正电子发射断层扫描(PET),研究人员发现,与正常体重对照组相比,肥胖个体中胰腺摄取的脂肪酸更高,这与葡萄糖摄取和血流量降低有关,与β标记物负相关-细胞功能[81]。要认识到的NEFA区域一级是胰岛素的严密控制之下是很重要的,而这通常是由脂肪组织胰腺[肝脏之间的串扰,以及调节49,82]。另外,循环NEFA只能使胰腺遇到的一部分脂肪酸发生,血液中NEFA的浓度很低[83]。β细胞摄取脂肪酸还有其他几种来源。(I)脂蛋白脂肪酶(LPL)以及因此从循环甘油三酸酯中摄取可以调节β细胞功能[84]。(II)脂肪细胞浸润在靠近在T2DM胰岛和甘油三酯含量的水解是对β细胞[脂肪酸的其它来源65,85]。(III)在T2DM中发现了β细胞内脂质滴的形成[86],并且以高脂肪饮食喂养小鼠后,β细胞中HSL的高表达降低了胰岛素分泌,这与甘油三酸酯的积累较低有关与野生型小鼠相比,转基因小鼠的胰岛内[87]。此外,毒性脂质中间体从脂肪酸包括二酰基和神经酰胺酸代谢被证实造成损害胰岛素信号的肝细胞和心肌细胞内[衍生88,89],但较少有人知道这种毒性代谢物如何影响β细胞[7,57]。因此,血浆NEFA与β细胞功能障碍之间缺乏相关性,并未提供针对脂质对β细胞功能的脂毒性作用的证据。早先的研究声称,细胞凋亡可在T2DM [解释在β细胞量和功能丧失64,90,91,92]。但是,无论从动物或人类研究[以支持β细胞死亡没有有力的证据23,30,93]。在另一方面,专业β细胞表型(去分化)的损失可通过糖脂毒性[说明63,94,95,96,97],这是最可能的机制后解释β细胞功能的返回T2DM [缓解10,98]。下的多余的脂肪和最终葡萄糖代谢的条件下,一些β细胞失去它们的身份成为胰高血糖素产生α-细胞[96,99]。决定性的数据证实β细胞去分化是有限的,特别是在人类中[63,96]。需要更多的工作来确认去分化/再分化是否是T2DM中β细胞功能障碍和恢复的主要潜在分子机制。4.脂蛋白输出与β细胞功能障碍之间的联系是否有明确证据表明脂蛋白输出与β细胞的“脂毒性”或功能障碍之间存在联系?“双周期”假说假设肝脂蛋白输出是将多余的脂肪输送到胰腺并最终导致β细胞功能障碍的上游途径[28]。然而,到目前为止,尚无直接证据支持VLDL-TG出口是胰腺内脂肪堆积的来源这一观点,这仍然是一个假设(图1)。间接地,我们已经表明,糖尿病的缓解与肝脏VLDL-TG的输出下降有关,而回到糖尿病状态与血浆VLDL-TG的水平升高有关[43]。由β细胞VLDL颗粒的直接摄取报道在人类,并且在小鼠和受影响胰岛素分泌[发现β细胞内LPL的表达84,100]。与表达LDL受体的小鼠相比,从缺乏LDL受体的小鼠中分离出的胰岛显示出更低的LDL摄取和更高的存活率[101]。此外,据报道,LPL在胰岛的毛细血管中表达,这确保了餐后脂肪酸从乳糜微粒向β细胞的转运[83]。胰腺胰岛内ApoC-III的局部表达已导致小鼠β细胞衰竭[53]。相比之下,发现高密度脂蛋白(HDL)在β细胞中的表达对内质网应激具有保护作用[102]。在靠近高胰内脂肪含量和脂肪细胞浸润的胰岛在T2DM [是已知的65,103]。最近,我们已经证明肝脏脂肪含量和肝VLD-TG出口的正常化与VLDL-TG的棕榈酸成分的下降有关,VLDL-TG是将脂肪输送到包括胰腺在内的周围组织的途径[43]。这种脂肪酸是DNL的强制性产物,是高浓度和长时间暴露于β细胞的毒性最高的脂肪酸[69]。有趣的是,发现糖尿病复发期间β细胞功能的丧失与VLDL-TG血浆水平升高,富含棕榈酸的血浆水平升高以及胰内脂肪水平升高相关(图2)。尽管有证据表明有毒脂质在NAFLD发病机理中的作用,但关于对人β细胞的这种作用的数据有限[57]。这主要是由于接近人类胰腺组织的机会有限。与肝脏不同,胰腺活检是一个非常侵入性的过程,在临床实践中不可行。人类的可用数据来源于在手术过程中从死后捐献的器官和切除的组织中收集的胰腺样本,这不是理想的条件,可能部分解释了相互矛盾的报道[104]。由于这些障碍,迫切需要开发非侵入性成像技术来研究体内β细胞,并且目前正在开发使用安全示踪剂的新型PET-MRI方法[105]。人们已经知道了很长时间的是胰岛的生物学和结构在人和啮齿动物不同,这反映在β细胞的适应不良代谢条件[能力106,107,108 ]。因此,最近的工作应集中在人类研究上,考虑物种之间的这些主要差异。来自人类胰岛的最新RNA测序数据表明,饱和脂肪酸诱导的β细胞应激独立于主要的炎症途径[109]。最近的一项研究报告说,簇分化36(CD36)受体的更高表达与肥胖捐赠者患有T2DM的β细胞中胰岛素分泌缺陷有关[110]。CD36是一种转运蛋白,可决定β细胞对脂肪酸的摄取,并且可能是阻断这些有毒脂质产物对β细胞摄取的潜在靶标。此外,发现该CD36受体位于人β细胞的胰岛素颗粒上,并可以控制脂肪酸对胰岛素分泌的刺激[111]。需要进一步的工作来鉴定潜在的毒性脂质种类及其对β细胞功能的毒性作用的潜在机制,从而为T2DM的替代治疗提供依据。5.脂肪因子和脂质相关标记肝脏,胰腺和脂肪组织之间的高度协调可维持人类的脂质稳态。尽管人们长期以来一直认为它是储藏库,但是在发现瘦素和脂联素之后,近年来脂肪组织的代谢功能引起了更多关注[112]。因此,在讨论β细胞功能障碍,T2DM和CVD时应考虑脂肪组织的功能。瘦素主要由脂肪细胞产生,血浆水平反映了人体总脂肪量。因此,瘦素水平在女性中总是高于男性在任何给定BMI [113,114]。瘦素调节脂肪储存以及食欲和已经与两个葡萄糖和降脂作用相关[18,19,20]。脂连蛋白,脂肪细胞的另一来源的激素,具有抗糖尿病作用[21,22]。与瘦素相反,脂联素水平与肥胖呈负相关[23]。的血浆瘦蛋白与脂联素比率被认为atherogenicity在T2DM [标记115,116]。已知的是,瘦素水平在肥胖和2型糖尿病,和耐升高的瘦素作用已被广泛接受[117,118]。膳食重量损失已经报道了在瘦素原因减少和增加在脂连蛋白水平[119,120,121,122]。脂肪组织中的炎症很可能是多余脂肪堆积的结果。但是,炎症细胞因子在脂肪组织生物学中的作用尚不确定。是否炎性细胞因子促进β细胞功能障碍和心血管疾病的发展需要进一步调查,这超出了本审查[的范围123,124 ]。的低度炎症被认为与相关联的C16:0神经酰胺,以及此脂质种类的降低血浆水平被报告为对于T2DM的电位疗法[125,126]。然而,发现饱和脂肪酸诱导β细胞独立的主要炎症途径[的ER应激30,31]。点击:查看文章剩下部分 查看更多医学文章 查看更多生物学文章 使用专业文章翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:mdpi
2021-02-26 18:35:50
饥饿将粘菌霉菌变成多细胞生物
硫代谢如何为多细胞性进化铺平道路 2021年2月24日 进化生物学 微生物学(B&M) 当煤泥霉菌Dictyostelium discoideum(简称Dicty)耗尽食物时,硫的限制会促使其从单细胞生物发展为多细胞生物。马克斯·普朗克免疫生物学和表观遗传学研究所的研究人员非常详细地介绍了这种早期真核生物中的营养信号传导途径。他们的结果表明,新陈代谢如何在多细胞性起源中起关键作用。此外,该发现还对诸如人类的更复杂生物具有治疗意义。在癌细胞中靶向硫代谢可以增强抗肿瘤免疫力。 在显微镜下,粘液霉菌Dictyostelium discoideum。饥饿诱导单细胞迪斯科菌聚集到多细胞生物中。 ©免疫生物学和表观遗传学MPI / B. Kelly 从单细胞生物到多细胞生物的转变是复杂生命形式进化的重要一步。多细胞生物起源于数亿年前,但造成这一事件的力量仍然是神秘的。为了研究多细胞性的起源,位于弗赖堡的马克斯·普朗克免疫生物学和表观遗传学研究所的埃里卡·皮尔斯(Erika Pearce)的研究小组转向了粘液霉菌 盘基网柄菌(Dictyostelium discoideum),它可以在单细胞和多细胞状态下存在,处于这一关键进化步骤的顶峰。这些截然不同的州仅取决于一件事-食物。 皮尔斯实验室的一个核心问题是回答新陈代谢的变化如何驱动细胞功能和分化。通常,他们研究免疫细胞来回答这个问题,但是,当第一作者贝丝·凯利(Beth Kelly)加入该小组时,他们决定转移注意力。“我们发现,如果我们对养分的可获得性如何引起细胞功能变化感兴趣,那么没有比Dicty更能研究的生物了,Dicty饥饿会导致细胞从自身存在变成多细胞生物。“这是生物学的巨大转变。”埃里卡·皮尔斯(Erika Pearce)说。 饥饿推动了这种社交变形虫的多细胞聚集 仅仅通过剥夺 D. discoideum 的食物供应,他们就可以将这种生物体从单细胞变成多细胞聚集体,从而使他们能够检查驱动这种多细胞性的因素。聚集体表现为复杂的多细胞有机体,单个细胞专门具有不同的功能并整体移动。多细胞迪斯科 菌 最终形成保护性孢子,使种群能够在饥饿中生存。 饥饿的 迪斯科 引起活性氧(ROS)产生的快速爆发。ROS是由我们的细胞产生的小分子,但在更复杂的基于受体的系统存在之前,也被用于进化的早期信号传导。但是,当ROS含量过高时,它们会变得有害,氧化蛋白质和核酸,最终导致细胞死亡。因此,ROS的增加通常伴随着抗氧化剂的产生以控制这些ROS。贝丝·凯利(Beth Kelly)指出:“在我们的案例中,抗氧化剂谷胱甘肽的产生增加了,以应对饥饿时大量的ROS破裂。如果我们给饥饿的粘液霉菌额外的谷胱甘肽,我们就能阻止ROS的这种增加,重要的是,停止了多细胞聚集体的形成,使细胞保持单细胞状态。” 饥饿的饮食改变他们的新陈代谢 反过来,当他们使用抑制剂阻止谷胱甘肽的产生时,他们发现与其促进更快的聚集,反而将其逆转,从而保持了单细胞状态的时间更长。这表明除了抗氧化活性外,补充谷胱甘肽的某些功能正在逆转聚集过程。他们仔细考虑了谷胱甘肽的制备方法。它仅由三种氨基酸,半胱氨酸,甘氨酸和谷氨酰胺组成。凯利将这些成分分别单独添加到饥饿的细胞中,她发现只有半胱氨酸才能在饥饿时逆转多细胞聚集。 半胱氨酸生物学的独特之处是什么?它是仅有的两个含硫的氨基酸之一,这种硫对于增殖细胞中的多种过程至关重要。它用于制造新蛋白质,对于酶活性至关重要,并支持代谢过程以产生能量。因此,限制半胱氨酸会限制硫的供应,减慢生长和扩散,并表明营养不足,无法继续进行这些过程。对于 双歧杆菌,这意味着它们应该过渡到多细胞状态,以形成可以在营养限制期生存的孢子,从而保护种群。 硫决定细胞功能和多细胞性 事实证明,硫的损失是造成这种多细胞性的重要过程,而增加的ROS是D. discoideum 实现这一目标的聪明手段 。通过增加ROS,使Dictyostelium饥饿 因此增加了谷胱甘肽的产量。“这实际上将细胞中的半胱氨酸拉成谷胱甘肽,限制了其硫用于增殖和蛋白质生产的用途。通过人为地阻止谷胱甘肽的产生,或通过向饥饿的细胞提供额外的半胱氨酸,我们可以恢复这种硫的供应,恢复增殖和单细胞状态,”贝丝·凯利说。“因此,我们揭示了硫如何决定单细胞和多细胞状态之间的转换。” 硫和氧是古代世界中常见的小元素,这项工作揭示了它们可能在多细胞起源中发挥了作用。 “除此之外,我们认为我们的工作对更复杂的生物体具有治疗意义。癌细胞具有很高的增殖能力,某些癌细胞专门保留硫的代谢。限制或靶向这些细胞中的硫代谢过程可能会增强抗肿瘤免疫力,” Pearce说。免疫细胞通过含有不同营养混合物的环境运输,免疫细胞功能取决于代谢途径的活性。操纵硫代谢可能是调节免疫细胞功能的一种手段。总的来说,在真核双歧杆菌早期检查这种保守的营养信号传导途径可能对哺乳动物细胞功能非常有用。 点击:查看更多生物学文章 查看更多医学文章 使用文章翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:mpg
2021-02-25 16:25:28
具有基因毒性的大肠杆菌“卷入了行动”
Max Planck研究人员及其合作者揭示了体外结肠类器官的转化 2021年2月12日 大肠杆菌是人类肠道菌群的组成成员。但是,有些菌株会产生一种称为大肠菌素的基因毒素,与大肠癌的发生有关。尽管已经证明大肠菌素在宿主细胞的DNA中留下了非常特殊的变化,可以在结直肠癌细胞中检测到这种变化,但这种癌症的发展需要很多年,而使正常细胞变成癌变的实际过程仍然不明了。柏林马克斯·普朗克感染生物学研究所的托马斯·迈耶(Thomas F. Meyer)组及其合作者现在已经能够“诱捕大肠菌素”,从而诱导大肠癌细胞特征性的遗传变化并引起转化的表型–感染仅几个小时后。 免疫荧光染色显示,产生基因毒性大肠菌素的大肠杆菌(绿色)引起DNA损伤(由DNA修复蛋白γH2AX的存在,白色表示)和巨细胞增多(细胞异常扩大)(右)。对于感染了大肠杆菌杆菌素合成缺陷的突变大肠杆菌菌株(大肠杆菌ΔclbR)的细胞,则未观察到这一点(左图)。细胞和DNA肌动蛋白丝的鬼笔环肽(红色)染色显示为蓝色。 超过三分之二的结直肠癌患者的肠道中会携带产生大肠杆菌的大肠杆菌菌株,并且在西方世界,携带者的数量正在增加。某些细菌种类与某些形式的人类癌症之间存在联系的流行病学证据十分丰富,但仍然难以提供证明广泛的预防策略所需的直接证据。Meyer的团队最近通过鉴定宿主细胞中的遗传签名大肠菌素叶,并证明可以在大肠癌亚组中检测到这种关联,首次提供了明确的证据。 现在,他们通过利用类器官来观察转化本身,迈出了重要的一步。这项新技术使培养3D球形形式的正常原代结肠上皮细胞成为可能。这些空心的“微型器官”是由成年干细胞产生的,这些干细胞驱动结肠粘膜的快速周转。在该技术出现之前,体外感染实验需要已经部分转化的细胞系,因此不适合概括癌症发展的早期阶段。测试是否产生大肠杆菌素对宿主细胞有任何持久影响,研究小组将其类器官感染了三个小时。这已经足以诱发大肠癌的特征性变化。受感染的细胞不仅开始比正常细胞增殖更快,而且一部分细胞不再需要生长培养基中存在Wnt蛋白。 生长因子驱动干细胞周转 这个关键的“生长因子”存在于结肠腺底部干细胞周围的环境中,并促使其翻转。在健康条件下,一旦细胞离开了这个含有Wnt的利基,就可以防止细胞的不受控制的增殖。“然后它们停止增殖并接管消化功能,直到到达表面后才被腐烂,被连续不断的细胞流推动离开干细胞生态位,”最近建立其研究的资深作者之一迈克尔·西加尔(Michael Sigal)说。柏林Charité大学医院自己的实验室,对这一现象进行了更详细的研究。他进一步解释说:“在类器官培养物中可以观察到相同的现象:它们需要Wnt持续存在才能保持生长。没有它,细胞就会分化并在不久后死亡。” 如对于受感染的类器官观察到的,这种生长因子独立性是早期结直肠癌细胞的特征。这些类器官的测序表明它们包含许多突变,包括大的结构变化,这些结构变化导致染色体的整个部分丢失,获得或重新排列。“令人惊讶的是,我们没有观察到直接参与Wnt信号转导的基因中的突变,已知这些基因会导致遗传突变的患者导致大肠癌。相反,我们发现了与p53信号转导有关的突变,”该新技术的第一作者Amina Iftekhar说。这种重要的肿瘤抑制因子被称为“基因组守护者”,到目前为止,只有很少的研究表明它也可能影响Wnt依赖性。 p53信号通路中的突变 托马斯·迈耶(Thomas F. Meyer)解释说,这些发现与大型癌症测序计划的证据十分吻合:“很明显,结直肠癌可以通过不同的机制产生。在慢性炎症驱动的情况下,例如结肠炎或克罗恩氏病,其中产生大肠杆菌素的大肠杆菌菌株尤为突出,p53的突变确实是早期事件。” 他们观察到的大的染色体重排在大多数大肠癌病例中都发现。 迈耶认为,这具有重要意义:“尽管大多数结直肠癌患者携带产大肠杆菌素的大肠杆菌,我们感到困惑的是,只能以很小的比例(最多百分之十)检测到大肠菌素签名。现在,我们的新结果表明,特征标记是从DNA受损部位正确去除交联的结果。如果此修复过程受到威胁或修复机制过载,则当受损细胞试图克服DNA交联时,似乎会发生总体染色体变化和染色体畸变。这种不良修复的证据在大肠癌中很常见,表明大肠菌素的致癌作用可能大大超过仅通过签名提示的病例的百分之十。 点击查看:更多有关医学分类文章 更多生物学分类文章 使用文档翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:mpg
2021-02-23 16:25:26
人类基因组如何改变稀有疾病的研究
孟德尔疾病是由单个基因的突变引起的。人类基因组的第一版发表于2001年,对如何诊断,控制和预防这些疾病具有广泛的意义。 当人类基因组的第一稿公布1,2,预计会对医学革命性影响。关于药物转变成为个性化,预测性和预防性的范式转变做出了大胆的预测3。对于许多人来说,没有实现这样的转变,这可能是因为关注于糖尿病和冠状动脉疾病等常见疾病。但是这些预测是针对孟德尔疾病的预测的,孟德尔疾病是由单个基因突变引起的,例如遗传性癌症和儿童的多种发育迟缓。 在起草基因组之前,必须通过称为克隆的过程来确定有关突变基因的序列和基因组位置的基本信息,在克隆过程中,使用酶从人DNA上切割出短的染色体片段,并在细菌中复制以产生足够的数量,以用于分析。克隆是一项非常费力的工作,通常需要花费数年时间,并且只能由少数几个实验室执行。因此,大多数孟德尔疾病的遗传基础尚不清楚,从而使诊断极为困难。即使对于那些具有已知潜在遗传基础的人(例如脆弱的X综合征),由于该疾病的临床表现及其罕见性存在显着差异,专家仍然可能无法做出诊断4。 在1990年代,“定位图谱”方法的发展使鉴定与孟德尔疾病有关的基因变得更加容易。早期的位置定位工作涉及使用原始基因组图谱比较具有相同疾病的几个人的DNA,该图谱包含一些在个体之间不同的已知序列。这些用作位置标记,以帮助研究人员在候选致病区域5归零。原始图谱可以追溯到1987年,对早期的基因发现工作至关重要。然而,其低分辨率是基因发现工作的主要障碍。 因此,很难夸大人类基因组草案对孟德尔疾病患者及其家人的影响力。该草案并未将单个基因与疾病直接关联,但确实为诊断革命提供了必要的要素。最初,它提供了丰富的标记图,可以在位置映射中实现更高的分辨率。然而,真正的改变游戏规则的是将原始基因组与“下一代”测序技术结合使用,该技术可以读取整个基因组,而不是单个基因4。这使研究人员能够比以前更快地在整个基因组中识别潜在的致病变异。 由于这项技术的进步,具有已知遗传原因的孟德尔疾病的数量已从2001年的1,257种增加到撰写本报告时的4,377种。现在,越来越多的患者摆脱了长期存在的诊断瓶颈。在紧急情况下,许多人可以在数小时内得到诊断,其精确度在医学上是无与伦比的。这为疾病管理的真正个性化打开了大门。例如,可以使用某些特定的致病基因变异的疗法,例如CFTR基因导致囊性纤维化。我们还可以避免徒劳的干预措施,例如生长激素疗法,这种疗法对患有孟德尔病的儿童Seckel综合征(一种侏儒症)无效。 一旦建立了孟德尔疾病和基因之间的关联,该疾病就可以高度预测,这意味着可以预防。例如,美国医学遗传学和基因组学院建议,如果其携带的59种基因6中的任何致病变异与可能威胁生命的孟德尔疾病有关,则应告知其基因组已测序以用于任何诊断目的的人。有抢先管理功能。英国最近的一项测序研究7涉及约50,000名年龄在40至69岁之间的志愿者,结果表明2%的人携带这种可行的变体。和早期数据8表明对这些变异进行基于人群的筛选会导致风险管理程序的接受率很高。检测这些变体以及随后将出现的更多变体的能力以及影响药物反应的变体的能力,使人们对基因组测序具有普遍性的未来的潜在医学益处有所了解。大规模基因组测序的另一个好处是生殖能力的增强。携带者筛查可以确定一个人是否携带一个“隐性”遗传变异体的一个拷贝,如果该基因的两个拷贝中均存在该隐性遗传变异体,则通常会导致疾病(通常是父母双方都携带该变异体并将其传给孩子)(图1)。 。有了这些知识,携带者就可以做出明智的生殖选择。隐性变异引起的威胁泰伊-萨克斯病和地中海贫血的两个致命威胁状况已分别通过携带者筛查在纽约和塞浦路斯的高风险社区得以消除9。可以扩展这种模型以针对所有严重或致命的隐性孟德尔疾病基因的未来,并且受到私营部门和公共资助计划的拥护。但是,重要的是要注意,关于将基因筛查用于生殖选择存在着许多伦理学争论,关注的是“筛查”某些群体以及其他社会风险。此外,对与健康无关的性状进行基因筛查被认为是不道德的。 孟德尔隐性疾病是指一个人携带两个副本的致病基因变异而引起的隐性疾病。在这个假设的家谱中,有两个孩子从母亲那里继承了一个致病变异的副本,从父亲那里继承了一个无害变异的副本。反过来,他们各自将致病变体的一个副本传递给孩子。如果这些表亲(或携带该变体的任何两个人)要育有孩子,则每个后代都有机会继承两个副本,从而发展成该病。人类基因组序列1,2改变了我们识别致病变体的能力。今天,可以对人们进行筛查以确定他们是否携带这种变异,并且可以通过基因组测序快速诊断出患有这种疾病的人。 在表亲之间普遍存在联合的国家中,携带者筛查的影响最大。由于表亲比不相关的人共享更多的变异,因此他们很可能会共享并传播有害的隐性变异,从而导致隐性疾病。沙特阿拉伯就是一个例子。当人类基因组的初稿发布时,沙特阿拉伯就成为世界上隐性疾病发病率最高的文献10。二十年后,该国几乎所有主要的隐性疾病都已在基因水平上鉴定11。无数夫妇已通过变种鉴定获得了生殖选择,该国正处于推广扩大筛查计划的风口浪尖。 我们对孟德尔疾病的加深理解也开始使具有更复杂遗传基础的常见疾病患者受益。例如,一项2020年的测序研究7揭示,对于一小部分但有相当一部分患有常见疾病的人来说,一个单一的遗传变异是病因-也就是说,他们患有孟德尔病。除了因果关系,与孟德尔疾病有关的基因已被发现是许多常见疾病的危险因素12。常见疾病的新疗法纯粹是由人类基因组学提供的,而孟德尔基因在这方面起着不小的作用13。 医学遗传学界经常被指责做出空洞的承诺14。但是基因组学现在正在真正改善人们的健康。这不仅是辩护,而且是继续使用我们的DNA重写药物的灵感。点击:查看更多医学分类文章 查看更多生物学分类文章 免费试用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:nature
2021-02-22 19:47:45
生命起源:达尔文进化论是在生命本身之前开始的吗?
由 德国慕尼黑路德维希安大学 随机序列DNA 12-mers的模板化连接。(A)在细胞进化之前,最初的核酶被认为具有基本的细胞功能。在指数巨大的序列空间中,功能性核酶的自发出现是极不可能的,因此可能需要预选机制。(B)在我们的实验中,DNA链在低温下杂交形成三维复合物,该复合物可以在高温解离步骤中连接并保存。系统针对具有特定连接位点基序的序列以及继续充当模板的链进行自我选择。因此,发夹序列被抑制。(C)浓度分析显示在多个温度循环后逐渐出现更长的链。插图(A红色,T蓝色)显示,尽管12聚体(88,009链)具有基本上随机的序列(白色),较长的链(分析的60聚体,235,913链)中出现了各种序列模式。(D)样品在75°C至33°C之间经受不同数量(0至1,000)的温度循环。用SYBR后染色的DNA在PAGE上进行浓度定量。信用:美国国家科学院院刊(2021)。 Ludwig-Maximilians-Universitaet(LMU)在慕尼黑的物理学家进行的一项研究表明,在合理的益生元环境中,分子大分子的基本特征(例如其亚基组成)足以触发选择过程。 在
2021-02-20 18:33:14
“扭曲的电梯”可能是理解神经系统疾病的关键
由 悉尼大学 悉尼大学领导的国际科学家团队揭示了谷氨酸转运蛋白是我们细胞中最重要的分子机器之一的形状,有助于解释我们的脑细胞如何相互交流。 谷氨酸转运蛋白是我们所有细胞表面上的微小蛋白质,可关闭和关闭化学信号,这些化学信号在确保所有细胞间对话顺利进行中起着重要作用。他们还参与神经信号传递,新陈代谢以及学习和记忆。 研究人员使用低温电子显微镜(cryo-EM)捕获了转运蛋白的精美细节,表明它们看起来像嵌入细胞膜中的“扭曲升降机”。 这项世界首创的发现开辟了一个全新的可能性领域,研究转运蛋白的缺陷是否可能是诸如阿尔茨海默氏病等神经系统疾病的原因。 研究结果发表在《自然》上。 博士说:“我第一次看到这张照片是惊人的。它揭示了这种转运蛋白的工作原理,并解释了多年的研究成果。” 是该研究的主要作者的学生Ichia Chen。 多任务转运车 研究人员能够通过使用冷冻-EM(一种高度敏感的显微镜)分析成千上万个被困在冰薄层中的图像来“拍摄”谷氨酸转运蛋白的结构,这使这项研究成为可能。 使用电子束拍摄生物分子,Cryo-EM可以使肉眼看不见的东西可
2021-02-18 20:00:05
SARS-CoV-2穗蛋白中的突变使传染性提高了八倍
由 纽约大学 PNG / CC0公共领域 SARS-CoV-2突触蛋白的突变是英国,南非和巴西出现的相关变体中的几种遗传突变之一,使该病毒在人细胞中的传染性比普通人高出八倍。根据发表在《eLife》杂志上的研究,该病毒起源于中国。 由纽约大学,纽约基因组中心和西奈山的研究人员领导的这项研究证实了D614G突变使SARS-CoV-2更易于传播的发现。 纽约大学生物学助理教授内维尔·桑贾纳(Neville Sanjana)表示:“自我们最初进行这项研究以来的几个月中,D614G突变的重要性不断提高:该突变已接近普遍流行,并已包括在所有当前关注的变异中。纽约大学格罗斯曼医学院神经科学与生理学教授,纽约基因组中心核心教员。“确认这种突变导致更多的可传播性,可能在一定程度上解释了为什么病毒在过去的一年中如此迅速地传播。” SARS-CoV-2穗状蛋白中的D614G突变(通常称为“ G变体”)可能在2020年初出现,现在是全美国SARS-CoV-2病毒中最流行和最主要的形式在全球许多国家 随着多个突变的传播,研究人员一直在努力了解这些突变的功能意义,以及它们是否有意义地改变了病毒的传
2021-02-18 19:39:28
识别面部形状的基因
由 伦敦大学学院一个国际研究小组发现,影响拉丁美洲人口唇形的基因似乎是继承自Denisovans的基因,Denisovans是几万年前的绝种古代人类群体。图片来源:UCL,艾克斯-马赛大学和开放大学研究团队UCL领导的研究小组发现了确定人的面部轮廓形状的基因。研究人员确定了32个影响面部特征的基因区域,例如鼻子,嘴唇,下巴和额头形状,其中9个是全新发现,而其他人则利用先前有限的证据验证了基因。来自拉丁美洲各地6,000多名志愿者的数据分析今天发表在《科学进展》上。由伦敦大学学院,艾克斯-马赛大学和开放大学领导的国际研究小组发现,其中一个基因似乎是继承自丹尼斯万斯家族的基因,该家族是几万年前的绝种古代人类群体。研究小组发现,有助于唇形的基因TBX15与Denisovan人的遗传数据相关,为该基因的起源提供了线索。丹尼索瓦人生活在中亚,其他研究表明他们与现代人类杂交,因为他们的某些DNA生活在太平洋岛民和美洲原住民中。共同通讯的作者Kaustubh Adhikari博士(UCL遗传学,进化与环境和开放大学)说:“我们发现,脸形基因可能是古代人类进化以适应其环境的进化产物
2021-02-08 19:15:01
气候变化可能推动了SARS-CoV-2的出现
剑桥大学 自1901年以来,由于气候变化导致地理范围的变化,蝙蝠的本地数量有所增加。放大的区域代表了SARS-CoV-2蝙蝠起源祖先的可能空间起源。图片来源:Robert Beyer博士 今天发表在《科学总数》杂志上的一项新研究,环境为气候变化可能在SARS-CoV-2(导致COVID-19大流行的病毒)的出现中发挥了直接作用的机制提供了第一个证据。 这项研究表明,在过去的一个世纪中,云南南部以及缅甸和老挝的邻近地区的植被类型发生了大规模变化。气候变化,包括温度升高,日照增加和大气中的二氧化碳(影响植物和树木的生长),已将自然栖息地从热带灌木地变为热带稀树草原和落叶林。这为主要生活在森林中的许多蝙蝠物种创造了合适的环境。 一个地区中冠状病毒的数量与存在的不同蝙蝠物种的数量紧密相关。该研究发现,在过去的一个世纪中,另外40种蝙蝠物种已迁入中国云南南部,其中藏有大约100多种蝙蝠传播的冠状病毒。这个“全球热点”是遗传数据表明可能出现SARS-CoV-2的区域。 研究人员罗伯特·拜尔(Robert Beyer)博士说:“上个世纪的气候变化使云南南部的栖息地更适合
2021-02-07 16:35:10
研究人员发现世界海洋中巨大的碳氢化合物循环
加利福尼亚大学 哈里森·塔索夫(Harrison Tasoff)撰写 -圣巴巴拉研究人员从Sargasso海中获取水样。图片来源:David Valentine 碳氢化合物和石油在环境科学中几乎是同义词。毕竟,石油储备几乎涵盖了我们遇到的所有碳氢化合物。但是,将其起源追溯至生物来源的少数几种碳氢化合物的生态作用可能要比科学家最初怀疑的更大。加州大学圣塔芭芭拉分校和伍兹霍尔海洋学研究所的一组研究人员对这个以前被忽视的海洋学领域进行了调查,以寻找被忽视的全球周期的迹象。他们还测试了海洋生物的存在可能如何影响海洋对石油泄漏的反应。“我们已经证明了海洋中发生了大规模而迅速的碳氢化合物循环,这与海洋对石油输入的反应能力不同,”地球部诺里斯总统主席大卫·瓦伦丁教授说。 UCSB的科学。由他的研究生Eleanor Arrington和Connor Love领导的这项研究发表在《自然微生物学》上。2015年,由剑桥大学的科学家领导的国际团队发表了一项研究,证明了碳氢十五烷是由海洋蓝细菌在实验室培养物中产生的。研究人员推断该化合物可能在海洋中很重要。Valentine解释说,这种分子似乎可以缓解弯曲膜的应力,因此在诸如叶绿体之类的东西中发现了这种分子,其中紧密堆积的膜需要极高的曲率。某些蓝细菌仍会合成该化合物,而其他海洋微生物则很容易将其消耗能量。瓦伦丁(Valentine)与伍兹霍尔(Woods Hole)的克里斯·雷迪(Chris Reddy)共同撰写了两页的评论文章,并决定与Arrington和Love进一步探讨这个话题。他们于2015年参观了墨西哥湾,然后于2017年参观了西大西洋,以收集样本并进行实验。研究小组从大西洋的营养贫乏地区采样了海水,该地区被称为Sargasso海,以从墨西哥湾涌入的浮游海藻海藻命名。情人说,这是美丽,清澈的蓝色海水,中间夹着百慕大水。获得样品显然是一项相当棘手的工作。由于十五烷是柴油燃料中的常见碳氢化合物,因此该团队必须采取额外的预防措施,以避免船舶本身受到污染。他们让船长将船转成风,以免尾气污染样品,并且他们分析了柴油的化学特征,以确保它不是发现的任何十五烷的来源。在海洋的上层生产并消耗了大量的十五烷。图片来源:David Valentine而且,当研究人员收集海水时,没有人可以在甲板上吸烟,做饭或油漆。“这很重要,”瓦伦丁说,“我不知道您是否在船上呆了很长时间,但每天都要油漆。这就像金门大桥:从一个起点开始结束,直到到达另一端,是时候重新开始了。”这些预防措施奏效了,研究小组回收了原始海水样品。共同首席作者洛夫说:“ 2017年探险之后,站在伍兹霍尔的气相色谱仪前,很明显样品是干净的,没有柴油的迹象。” “十五烷是无误的,即使在[我们]运行的前几个样本中,也已经显示出清晰的海洋学模式。”由于它们在世界海洋中的数量众多,洛夫继续说道:“仅两种类型的海洋蓝细菌每年向海洋中添加的碳氢化合物就比向海洋中其他所有类型的石油输入(包括天然油)的总和多出500倍渗漏,漏油,燃料倾倒和土地流失。” 这些微生物每年总计生产300-600百万公吨的十五烷,这个数量比所有其他来源释放的130万吨的碳氢化合物相形见war。尽管这些数量令人印象深刻,但它们有些误导。作者指出,十五烷循环跨越地球表面的40%或更多,并且载有超过一万亿个四环的十五烷的蓝细菌细胞悬浮在世界海洋的阳光照射下。但是,这些细胞的生命周期通常少于两天。结果,研究人员估计,在任何给定时间,海洋仅包含约200万吨的十五烷。情人解释说,这是一个快速旋转的轮子,因此在任何时间点的实际数量并不是特别大。他说:“每隔两天,您就会生产和消耗海洋中的所有十五烷。”将来,研究人员希望将微生物的基因组学与其生理和生态联系起来。该团队已经拥有数十种生物的基因组序列,这些生物成倍增加以消耗其样品中的十五烷。瓦伦丁说:“那里的信息量令人难以置信,而且我认为这揭示了我们对许多消耗碳氢化合物的生物的生态学知之甚少。”在确认了这种生物烃循环的存在和程度之后,研究小组试图解决其存在是否会引发海洋分解泄漏的石油的问题。Arrington解释说,关键的问题是这些大量消耗十五烷的微生物是否在溢油清理过程中作为资产。为了对此进行研究,他们在距墨西哥湾天然石油渗漏不同距离的海水中添加了戊烷(一种类似于十五烷的石油烃)。在海洋中循环的十五烷的数量使石油中碳氢化合物的输入相形见war。但是,参与十五烷循环的微生物不太可能处理来自石油的碳氢化合物的化学复杂性。图片来源:David Valentine 他们测量了每个样本的总体呼吸,以观察食用戊烷的微生物繁殖所需的时间。研究人员假设,如果十五烷循环确实也引发了微生物消耗其他碳氢化合物的作用,那么所有样品应以相似的速率繁殖。但是事实并非如此。来自油渗流附近的样品迅速形成水华。瓦伦丁说:“在加入戊烷的大约一周内,我们看到了数量庞大的种群。” “而且,距离越远,速度就越慢,直到在北大西洋外出时,您可以等待几个月,再也看不到花开。” 实际上,在马萨诸塞州伍兹霍尔的工厂进行考察之后,阿灵顿不得不留下来,继续对来自大西洋的样品进行实验,因为这些花的出现花了很长时间。有趣的是,研究小组还发现了证据,证明属于另一个生命领域的细菌古细菌也可能在十五烷循环中起作用。共同主要作者阿灵顿说:“我们发现,尚未在实验室驯化的一群神秘的,全球丰富的微生物可能会被表层海洋中的十五烷所刺激。”结果引起了一个问题,即为什么存在一个巨大的十五烷循环似乎对石化戊烷的分解没有影响。瓦伦丁说:“石油与十五烷是不同的,您需要了解它们之间的差异以及实际上组成石油的化合物,才能了解海洋微生物对它的反应。”最终,微生物通常消耗戊烷的基因与十五烷所使用的基因不同。阿灵顿说:“与蓝细菌产生的十五烷相比,生活在百慕大近海的清澈水中的微生物接触石化戊烷的可能性要小得多,因此携带戊烷消耗的基因的可能性也较小。”Valentine继续说,不同微生物的负荷可以消耗十五烷,但这并不意味着它们也可以消耗其他碳氢化合物,特别是考虑到石油中存在的碳氢化合物结构多样。海洋生物生产的普通碳氢化合物少于十二种,包括十五烷和甲烷。同时,石油包含成千上万种不同的碳氢化合物。更重要的是,我们现在看到能够分解复杂石油产品的生物倾向于大量生活在天然石油渗漏附近。当海洋中的微生物种群受到特定地理区域中特定能源的限制时,情人将这种现象称为“生物地理引发”。他说:“我们在这项工作中看到的是十五烷与石油之间的区别,这对于理解不同的海洋地区将如何应对石油泄漏非常重要。”象Sargasso海这样的营养贫乏的旋流占地球表面的40%。但是,无视土地,仍然留下了地球30%的土地去探索其他生物碳氢化合物循环。瓦伦丁认为,生产率较高的地区的过程将更加复杂,并且可能为石油消费提供更多的动力。他还指出,大自然的生物烃生产蓝图有望为开发下一代绿色能源做出努力。 点击:查看更多生物学文章 查看更多医学类文章 试用免费版文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-05 19:59:47
研究发现儿童饮食对终身有影响
Study finds childhood diet has lifelong impact研究发现儿童饮食对终身有影响 by University of California - Riverside加州大学河滨分校 Study in mice finds high-fat, high-sugar diet has long-lasting effects on the microbiome. Credit: UCR对小鼠的研究发现,高脂,高糖饮食对微生物组具有持久的影响。信用:UCR Eating too much fat and sugar as a child can alter your microbiome for life, even if you later learn to eat healthier, a new study in mice suggests.一项新的对老鼠的研究表明,即使小时候吃太多的脂肪和糖,也会改变你的微生物组的生活,即使你以后学会饮食更健康。 The study by UC Riverside researchers is one of the first to show a significant decrease in the total number and diversity of gut bacteria in mature mice fed an unhealthy diet as juveniles.加州大学河滨分校的研究人员是第一批表明以不健康饮食作为未成年人喂养的成熟小鼠肠道细菌总数和多样性显着减少的研究之一。 "We studied mice, but the effect we observed is equivalent to kids having a Western diet, high in fat and sugar and their gut microbiome still being affected up to six years after puberty," explained UCR evolutionary physiologist Theodore Garland.UCR的进化生理学家西奥多·加兰德(Theodore Garland)解释说:“我们研究了小鼠,但是观察到的效果相当于孩子们吃了西方饮食,脂肪和糖分很高,而且肠道微生物组在青春期后的六年内仍然受到影响。” A paper describing the study has recently been published in the Journal of Experimental Biology.最近在《实验生物学杂志》上发表了一篇描述该研究的论文。 The microbiome refers to all the bacteria as well as fungi, parasites, and viruses that live on and inside a human or animal. Most of these microorganisms are found in the intestines, and most of them are helpful, stimulating the immune system, breaking down food and helping synthesize key vitamins.微生物组是指在人类或动物体内和内部生活的所有细菌以及真菌,寄生虫和病毒。这些微生物大多数都在肠道中发现,它们中的大多数对刺激免疫系统,分解食物并帮助合成关键的维生素很有帮助。 In a healthy body, there is a balance of pathogenic and beneficial organisms. However, if the balance is disturbed, either through the use of antibiotics, illness, or unhealthy diet, the body could become susceptible to disease.在健康的身体中,病原体和有益生物之间存在平衡。但是,如果通过使用抗生素,疾病或不健康的饮食来破坏平衡,则身体可能容易患病。 In this study, Garland's team looked for impacts on the microbiome after dividing their mice into four groups: half fed the standard, 'healthy' diet, half fed the less healthy 'Western' diet, half with access to a running wheel for exercise, and half without.在这项研究中,Garland的研究小组将小鼠分为四组,研究了对微生物组的影响:一半进食标准的“健康”饮食,一半进食较不健康的“西方”饮食,一半进食运动的跑轮,还有一半没有。 After three weeks spent on these diets, all mice were returned to a standard diet and no exercise, which is normally how mice are kept in a laboratory. At the 14-week mark, the team examined the diversity and abundance of bacteria in the animals.在这些饮食中度过了三周之后,所有小鼠都恢复了标准饮食并且不进行运动,这通常是将小鼠饲养在实验室中的方式。在第14周的时候,研究小组检查了动物中细菌的多样性和丰富性。 They found that the quantity of bacteria such as Muribaculum intestinale was significantly reduced in the Western diet group. This type of bacteria is involved in carbohydrate metabolism.他们发现,在西方饮食组中,诸如肠杆菌的细菌数量显着减少。这种细菌参与碳水化合物的代谢。 Analysis also showed that the gut bacteria are sensitive to the amount of exercise the mice got. Muribaculum bacteria increased in mice fed a standard diet who had access to a running wheel and decreased in mice on a high-fat diet whether they had exercise or not.分析还表明,肠道细菌对小鼠的运动量敏感。喂养进食了可以运行滚轮的标准饮食的小鼠中的鼠毛细菌增加,而无论是否运动,高脂饮食的小鼠中的鼠毛菌减少。 Researchers believe this species of bacteria, and the family of bacteria that it belongs to, might influence the amount of energy available to its host. Research continues into other functions that this type of bacteria may have.研究人员认为,这种细菌及其所属的细菌家族可能会影响宿主的可用能量。对这种细菌可能具有的其他功能的研究仍在继续。 One other effect of note was the increase in a highly similar bacteria species that were enriched after five weeks of treadmill training in a study by other researchers, suggesting that exercise alone may increase its presence.另一个值得注意的影响是,在其他研究人员的一项研究中,经过五周的跑步机训练后,高度相似的细菌物种增加了,这表明单独运动可能会增加其存在。 Overall, the UCR researchers found that early-life Western diet had more long-lasting effects on the microbiome than did early-life exercise.总体而言,UCR研究人员发现,早期西方饮食对微生物组的影响远比早期运动更为持久。 Garland's team would like to repeat this experiment and take samples at additional points in time, to better understand when the changes in mouse microbiomes first appear, and whether they extend into even later phases of life.Garland的团队想重复此实验,并在其他时间点进行采样,以更好地了解小鼠微生物群的变化何时首次出现,以及它们是否延伸到生命的后期。 Regardless of when the effects first appear, however, the researchers say it's significant that they were observed so long after changing the diet, and then changing it back.研究人员说,无论何时开始出现这种影响,很重要的一点是,在改变饮食然后再改变饮食之后,很长时间才观察到它们。 The takeaway, Garland said, is essentially, "You are not only what you eat, but what you ate as a child!"加兰德说,外卖实质上是:“您不仅是所吃的东西,而且还是您小时候吃的东西!”点击: 查看更多生物学文章 查看其他分类文章 查看更多双语译文文章 使用双语译文翻译免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-02-05 19:49:45
免疫细胞关闭的逆转可保护衰老的大脑
已经发现称为巨噬细胞的免疫细胞在衰老过程中会关闭主要的代谢途径。在这些细胞中恢复新陈代谢足以缓解小鼠与年龄相关的认知能力下降。 乔纳斯·尼赫(Jonas J.Neher) 几乎在每个组织中都发现了被称为巨噬细胞的免疫细胞,对于维持器官健康和为抵抗致病生物提供第一道防线至关重要。巨噬细胞被激活后,其能量需求将急剧增加,因此它们会重新平衡或增强其两个主要的能量产生代谢途径(糖酵解和氧化磷酸化),从而迅速促进有效的免疫反应1。Minhas等人在《自然》中撰文。2报告指出巨噬细胞会在衰老过程中关闭这些代谢途径,严重损害巨噬细胞功能,进而损害大脑健康。这项工作不仅对保持衰老过程中的脑部健康有影响,而且对诸如阿尔茨海默氏病或败血症等可能适应不良的巨噬细胞状态很常见的疾病也有影响。 随着年龄的增长,大多数人都会出现慢性低度炎症3。一种不仅在衰老4期间而且在神经退行性疾病5期间都升高的炎症信号蛋白是前列腺素E 2(PGE 2)。Minhas等。着手研究PGE 2是否可能引起巨噬细胞与年龄相关的变化。有趣的是,作者们发现人和小鼠巨噬细胞自身中PGE 2的产量增加了,无论是在大脑还是在身体的其他地方(外围)。这导致了PGE 2的激活受体蛋白EP2在细胞中,进而导致抑制氧化磷酸化和糖酵解。产生的能量不足状态既限制了巨噬细胞的有益功能,又增加了炎症。 为了确定这些变化是否会引起与年龄相关的认知功能障碍,作者研究了一种小鼠品系,其中EP2受体水平仅在人体和大脑的巨噬细胞中降低,并用EP2抑制剂治疗了小鼠。令人惊讶的是,在两种情况下,EP2抑制都能使巨噬细胞的新陈代谢恢复到年轻的水平,减少了周围和大脑的炎症,并减轻了认知能力下降(图1)。这些结果表明(至少在小鼠中)衰老过程中的巨噬细胞功能障碍会影响大脑健康,并且可以通过逆转细胞中的代谢关闭来恢复正常的细胞功能。 图1 逆转衰老巨噬细胞的代谢关闭。被称为巨噬细胞的免疫细胞遍布全身(外围)和大脑,在大脑中被称为小胶质细胞。一,Minhas等。2报告指出,在衰老过程中,外周巨噬细胞和小胶质细胞产生更多的蛋白质前列腺素E2(PGE 2),该蛋白与细胞膜上的EP2受体结合。他们证明该信号通路的激活导致细胞中的代谢功能障碍,从而导致全身性慢性炎症和认知能力下降。b,作者以两种方式抑制EP2受体。首先,他们采用遗传学方法降低巨噬细胞和小胶质细胞中的EP2水平。其次,它们在药理学上抑制受体,但仅在外周。在这两种情况下,EP2抑制都能改善外周巨噬细胞和小胶质细胞的代谢功能,减少炎症并恢复认知能力。EP2的外周抑制导致小胶质细胞改变的机制尚不清楚(虚线箭头)。 Minhas和他的同事继续深入研究了老年巨噬细胞的新陈代谢。他们发现,相比于使用葡萄糖通过糖酵解或氧化磷酸化产生能量,这种巨噬细胞更倾向于以糖原(一种大的葡萄糖聚合物)的形式进行能量存储。尽管糖原通常用作燃料储备,但衰老的巨噬细胞尽管处于能量不足状态,但似乎并未使用该储备。 目前尚不清楚为什么衰老的巨噬细胞会储存额外的糖原,但树突状细胞(一种相关的细胞类型)会利用它们的糖原储备来促进其最早的炎症反应6。因此,可以想象衰老的巨噬细胞增加了糖原的储存,因此它们在急性炎症激活过程中可以增强免疫反应。与这个想法一致,众所周知,老化的小胶质细胞(脑巨噬细胞)已被引发-即,与年轻的小胶质细胞相比,对炎症的反应更加强烈7。Minhas和他的同事没有直接分析糖原存储量的增加是否能引发小胶质细胞启动。但是,这种可能性肯定值得研究,因为一些证据表明,老年大脑中加剧的免疫反应会导致神经退行性疾病7。 值得注意的是,也有证据表明小胶质细胞代谢功能异常在脑部疾病,尤其是阿尔茨海默氏病中起作用。在小胶质细胞受体蛋白TREM2中携带突变的人患阿尔茨海默氏症的风险增加了数倍。在小鼠中,TREM2缺乏会导致小胶质细胞代谢的破坏和阿尔茨海默氏病的恶化8。此外,小胶质细胞长期暴露于聚集的淀粉样β蛋白,这是阿尔茨海默氏病的标志,导致小鼠这些细胞中氧化磷酸化和糖酵解的分解9。在这两种情况下,增强小胶质细胞新陈代谢都会在小鼠模型中导致较轻度的阿尔茨海默氏病。 在败血症(一种因感染引起的过度炎症导致的疾病)中,PGE 2的水平也会增加9,长期的认知缺陷通常会发展7。在此,巨噬细胞进入一种称为免疫麻痹状态,其特征还在于通过两个氧化磷酸化的抑制和糖酵解1,10。因此,在脓毒症或衰老和神经退行性疾病期间巨噬细胞的细胞关闭可能分别是对过度或慢性免疫刺激的反应。从进化的角度来看,这种适应将是有益的,因为它将保护有机体免受可能引起组织损伤的过度活跃的免疫反应。但是,在生物体衰老的情况下,它似乎使大脑容易出现功能障碍甚至变性。在这些不同条件下,巨噬细胞免疫状态是否确实相似尚待研究。 Minhas和他的同事研究的另一个有趣的方面是发现,即使EP2抑制作用仅限于老年小鼠的周围(使用无法进入大脑的物质),大脑炎症也可以逆转并且认知功能得以恢复(图1)。 。这证实了先前的发现,即在大脑外部产生的免疫信号会影响小胶质细胞11,并且在败血症10之后和在阿尔茨海默氏病小鼠模型9中的小胶质细胞刺激大脑外部免疫细胞可以部分恢复外周巨噬细胞的代谢和功能。因此,越来越多的证据表明,在小鼠中,即使在疾病和衰老过程中,巨噬细胞仍对免疫刺激保持反应。 下一个挑战将是证明这种巨噬细胞可塑性也将在人类更长的寿命结束时得以保留,并且PGE 2 -EP2途径与人脑衰老和疾病有关。此外,在衰老动物中诱导最初的小胶质细胞关闭或使小胶质细胞恢复到年轻状态的免疫信号仍然未知。对它们的鉴定可以导致治疗多种疾病的治疗方法。 点击:查看更多生物学文章 查看更多医学文章 使用文档翻译功能 免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。 来源于:nature
2021-01-29 19:36:47
染色体如何进化以创造新的生命形式
染色体如何进化以创造新的生命形式约翰·休伊特(Phys.org) 贷方:PNG / CC0公共领域 3-D打印是一种通用过程,从某种意义上说,可以在CAD程序中绘制的几乎所有零件都可以被打印,至少在一定分辨率下即可。在铣床或车床上加工零件时,虽然具有更高的精度和材料选择的优势,但它的通用性略差一些,因为从理论上讲,许多可能的设计都无法进行加工。可以轻松地打印空心球,但是永远不能将球作为一个零件铣成空心球,除非您碰巧拥有一个可以装进球内的铣床。但是生物部分和整个动物呢?从设计的角度来看,增长有多普遍?我们在这里真正要问的是:遗传密码在确定可行和富饶的身体计划的能力方面有多普遍?昨天,我们讨论了一个名为“盒子里的基因组”的新项目,该项目旨在创建人工染色体从头开始,从原始的遗传序列开始,然后添加适当的组织蛋白以创建完整染色体的合理传真。这项工作的主要挑战之一是在正确的位置获得较大的结构,即所谓的拓扑关联域(TAD)。提出的问题是,是否可以在DNA中完全编码任何任意生物,例如龙。如果可以的话,那么染色体会是什么样子,此外,是否可以有不同的方法来编码同一生物?不幸的是,我们在化石记录中与龙(可能是已灭绝的翼龙或Brontornis的“恐怖鸟”)最接近的近似,并没有易于测序的基因组。但是,我们确实有足够的序列数据来寻找可能是其次的最佳选择,即它们的羽毛后代。除了原始序列之外,就基因组如何禁止真正的动物而言,我们真正想知道的是基因组如何变化以演化出新的形式。现已广为人知的是,简单的碱基对突变或表观遗传修饰可以微调次要物种的偶然性,例如着色,寄生虫抗性以及对温度或海拔高度的环境适应性。但是,真正的物种形成事件(那些冒犯他人的行为使代码从传统的人体计划中彻底脱离出来的重大侮辱)通常需要对核型进行更大的调整。换句话说,任何当前稳定的染色体表都必须通过重大的断裂,融合,倒位或重复来充分扰动,以使物种分叉。如果足够重要,那么这些过程可能会导致通用配伍性的丧失,其中所有新生成的后代不一定都能与所有其他新后代成功配对。在这种情况下,与亲本基因组的局部回交事件可能产生具有新物种身份的最小后代存活子。为了研究禽类基因组的进化,这只鸡被证明是无价之宝。由于它们的卵大且容易获得,因此小鸡也为发育研究提供了很好的模型。鸡基因组知识的一项非常实用的应用是通过工业化创造雏鸡,这些雏鸡很容易通过其羽毛的颜色进行性别鉴定。顺带一提,中国鸟类基因组的学生们决定深入研究鸭的基因组,因为用他们自己的话说,北京烤鸭令人赞叹。杭州浙江大学的研究人员在最近发表在《Gigascience》杂志上的论文中报道了整个鸭基因组及其所有相关TAD区的新图谱。就鸟类而言,鸭子基因组一方面介于雏鸡基因组之间,另一方面介于e基因组之间。就核型如何进化而言,真正重要的是性。换句话说,潜伏在大物种形成事件的起源后面的坚韧不拔的细节往往围绕着性染色体的细节。这些细节包括哪些常染色体片段融合在新的性染色体中,它们相对于互补序列的相对大小,其数目,假基因含量,重复区域和重组程度。就鸭子而言,性染色体不像鸡那样高度异质,也不像the一样完全同质。北京鸭的单倍体基因组约为1.4 Gb,其核型为9对大染色体(chr1-chr8,chrZ / chrW)和31对微染色体(chr9-chr39)。这些规格与大多数哺乳动物的规格有很大不同,但对于鸟类而言却是相当典型的。总基因组较小,Z / W性别决定系统和大量微型染色体也是有时在其他物种(如爬行动物,也许还有一些恐龙)中发现的特征。应该注意的是,鸟和蛇的Z / W是无关的,它们是从不同的常染色体进化而来的。Z / W系统不同于X / Y和X0系统,在X / Y和X0系统中,精子具有性别决定权。卵子控制着Z / W系统中的性别,其中雄性是同配性(Z / Z),雌性是异配性(Z / W)。Z染色体比W染色体更大,并且具有更多的基因,很像XY系统中的X染色体。奇怪的是,雄鸟是五颜六色的展示型,而雌鸟则通常更暗,更大。由于在禽类Z / W和哺乳动物X / Y染色体之间没有共享的基因,因此这两个系统可能共享一个共同的祖先,从而可以独立进化。Z染色体具有比人类X或Y染色体更能代表人类9号染色体的特征。对染色体如何进化的更多了解可能需要更仔细地观察系统的某些更极端点,例如鸭嘴鸭嘴兽。这种最极端的海狸鸟哺乳动物具有五对独立的XY染色体对,与海狸或鸭没有直接关系。在雄性生殖细胞减数分裂中,鸭嘴兽的性染色体形成一条由同源区域连接在一起的链,这些区域最终分离为XXXXX精子和YYYYY精子。该链中最鸟状的一对具有Z染色体特征,出现在链的相反两端。Z同源性较低的其他片段散布在X3和X5染色体上。从对鸭嘴兽和棘足动物基因组的最新研究中,研究人员能够推断出,我们自己的X染色体源自原始有锡安纳人X染色体与有袋动物分叉后的常染色体区域的融合。和鸟类一样,我们的性染色体是通过逐步抑制常染色体中的重组而形成的。该过程导致性别确定区域之间成对序列发散的模式,被称为“进化层”。基因组领域的另一个有用的关键点是澳大利亚肺鱼。最近的研究表明,它的基因组长超过430亿bps(比人类大14倍),使其成为已知的最大基因组。许多肺鱼染色体每个都比我们自己的整个基因组大。有较大的基因间区域和具有较高LINE元素重复含量(约90%)的内含子,与四足动物的内含子比射线鳍鱼的内含子更为相似。似乎肺鱼基因组仍在增长,并在其活跃的转座因子位点上不断扩展。由于肺鱼的身体计划代表着脊椎动物进化的主要转变,尽管细胞周期时间和核苷酸需求过高,但它们的染色体却围绕着许多额外的原材料,这并不奇怪。肺鱼的陆地化涉及在预先适应的叶状鳍中出现类似hoxc133和sall1的四肢样模式的基因新表达。编码表面活性剂的基因区域的重复使专心的呼吸得以实现,而嗅觉受体基因的增殖则允许检测到气味剂。回到最初的问题,即生长过程以及遗传密码在构建动物中可能有多普遍,一个有用的概念是可逆性。虽然可以打印任何3-D绘制的对象,但无法轻松预测用于打印该对象的特定G代码(G代码是用于移动工具的一系列“ Go”代码的转喻名称)。原因是可以使用许多可能的代码或刀具路径来制作相同的对象。因此,它不是一对一的,从这个意义上说是不可逆的。但是,从每个对象确实至少有一个对象的意义上讲,这是可逆的与之关联的G代码。但是,并非所有可能的G代码都有与之关联的真实对象。例如,一个人不能在同一地点两次放置塑料,也不能在稀薄的空气中在地球上打印。可能有人暗示,几乎所有可以在计算机上绘制的理论有机体或人体计划都永远不会真正地以DNA编码并生长。当然,某些没有出现在化石记录中的动物将来可能会在一定的时间和资源下进化,但是在系统停止运转之前它们实际上会变成什么样呢?在大小上限时,事情变得很无聊-要么是海中的巨型鲸类气瓶,要么是笨拙且对称的四脚架巨人。尽管时间和资源是真正的约束,但是最大的约束可能是代码本身。 点击:查看更多生物学文章 查看更多其他分类文章 使用文档翻译功能免责声明:福昕翻译只充当翻译功能,此文内容及相关信息仅为传递更多信息之目的,仅代表作者个人观点,与本网站无关,版权归原始网站所有。仅供读者参考,并请自行核实相关内容。若需要浏览原文、下载参考文献等,请自行搜索文中提到的原文网站进行阅读。来源于:phys
2021-01-28 19:35:19